Explicit contraction rates for a class of degenerate and infinite-dimensional diffusions

被引:0
作者
Raphael Zimmer
机构
[1] Universität Bonn,Institut für Angewandte Mathematik
来源
Stochastics and Partial Differential Equations: Analysis and Computations | 2017年 / 5卷
关键词
Stochastic differential equations; Langevin equation; Geometric ergodicity; Reflection coupling; Wasserstein distances; Kantorovich contraction; 60H10; 60J25; 34F05;
D O I
暂无
中图分类号
学科分类号
摘要
Given a separable and real Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document} and a trace-class, symmetric and non-negative operator G:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {G}\,{:}\,{\mathbb {H}}\rightarrow {\mathbb {H}}$$\end{document}, we examine the equation dXt=-Xtdt+b(Xt)dt+2dWt,X0=x∈H,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} dX_t = -X_t dt + b(X_t) dt + \sqrt{2} dW_t, \quad X_0=x\in {\mathbb {H}}, \end{aligned}$$\end{document}where (Wt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(W_t)$$\end{document} is a G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {G}$$\end{document}-Wiener process on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document} and b:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\,{:}\,{\mathbb {H}}\rightarrow {\mathbb {H}}$$\end{document} is Lipschitz. We assume there is a splitting of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document} into a finite-dimensional space Hl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^l$$\end{document} and its orthogonal complement Hh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^h$$\end{document} such that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {G}$$\end{document} is strictly positive definite on Hl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^l$$\end{document} and the non-linearity b admits a contraction property on Hh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^h$$\end{document}. Assuming a geometric drift condition, we derive a Kantorovich (L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} Wasserstein) contraction with an explicit contraction rate for the corresponding Markov kernels. Our bounds on the rate are based on the eigenvalues of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {G}$$\end{document} on the space Hl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^l$$\end{document}, a Lipschitz bound on b and a geometric drift condition. The results are derived using coupling methods.
引用
收藏
页码:368 / 399
页数:31
相关论文
共 57 条
[1]  
Bricmont J(2002)Exponential mixing of the 2D stochastic Navier–Stokes dynamics Commun. Math. Phys. 230 87-132
[2]  
Kupiainen A(1995)Estimation of the first eigenvalue of second order elliptic operators J. Funct. Anal. 131 345-363
[3]  
Lefevere R(1997)Estimation of spectral gap for elliptic operators Trans. Am. Math. Soc. 349 1239-1267
[4]  
Chen MF(2005)Coupling for some partial differential equations driven by white noise Stoch. Process. Appl. 115 1384-1407
[5]  
Wang FY(2011)Reflection coupling and Wasserstein contractivity without convexity C. R. Math. Acad. Sci. Paris 349 1101-1104
[6]  
Chen MF(2015)Reflection couplings and contraction rates for diffusions Probab. Theory Relat. Fields 124 345-380
[7]  
Wang FY(2011)Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations Probab. Appl. 339 879-882
[8]  
Da Prato G(2002)Exponential mixing properties of stochastic PDEs through asymptotic coupling Probab. Theory Relat. Fields 164 993-1032
[9]  
Debussche A(2004)Ergodic properties of highly degenerate 2D stochastic Navier–Stokes equations C. R. Math. Acad. Sci. Paris 36 2050-2091
[10]  
Tubaro L(2006)Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing Ann. Math. (2) 16 658-738