Supercloseness analysis of a stabilizer-free weak Galerkin finite element method for viscoelastic wave equations with variable coefficients

被引:0
作者
Naresh Kumar
机构
[1] Indian Institute of Technology Roorkee,Department of Mathematics
来源
Advances in Computational Mathematics | 2023年 / 49卷
关键词
Viscoelastic wave equations; Stabilizer-free weak Galerkin method; Semidiscrete and fully discrete schemes; Supercloseness; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we are concerned about a stabilizer-free weak Galerkin (SFWG) finite element method for approximating a second-order linear viscoelastic wave equation with variable coefficients. For SFWG solutions, both semidiscrete and fully discrete convergence analysis is considered. The second-order Newmark scheme is employed to develop the fully discrete scheme. We obtain supercloseness of order two, which is two orders higher than the optimal convergence rate in L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }(L^{2})$\end{document} and L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }(H^{1})$\end{document} norms. In other words, we attain O(hk+3+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(h^{k+3}+\tau ^{2})$\end{document} in L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }(L^{2})$\end{document} norm and O(hk+2+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(h^{k+2}+\tau ^{2})$\end{document} in L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }(H^{1})$\end{document} norm. Several numerical experiments in a two-dimensional setting are carried out to validate our theoretical convergence findings. These experiments confirm the robustness and accuracy of the proposed method.
引用
收藏
相关论文
empty
未找到相关数据