In this article, we are concerned about a stabilizer-free weak Galerkin (SFWG) finite element method for approximating a second-order linear viscoelastic wave equation with variable coefficients. For SFWG solutions, both semidiscrete and fully discrete convergence analysis is considered. The second-order Newmark scheme is employed to develop the fully discrete scheme. We obtain supercloseness of order two, which is two orders higher than the optimal convergence rate in L∞(L2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^{\infty }(L^{2})$\end{document} and L∞(H1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^{\infty }(H^{1})$\end{document} norms. In other words, we attain O(hk+3+τ2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal {O}(h^{k+3}+\tau ^{2})$\end{document} in L∞(L2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^{\infty }(L^{2})$\end{document} norm and O(hk+2+τ2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal {O}(h^{k+2}+\tau ^{2})$\end{document} in L∞(H1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^{\infty }(H^{1})$\end{document} norm. Several numerical experiments in a two-dimensional setting are carried out to validate our theoretical convergence findings. These experiments confirm the robustness and accuracy of the proposed method.