Supercloseness analysis of a stabilizer-free weak Galerkin finite element method for viscoelastic wave equations with variable coefficients

被引:0
|
作者
Naresh Kumar
机构
[1] Indian Institute of Technology Roorkee,Department of Mathematics
来源
Advances in Computational Mathematics | 2023年 / 49卷
关键词
Viscoelastic wave equations; Stabilizer-free weak Galerkin method; Semidiscrete and fully discrete schemes; Supercloseness; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we are concerned about a stabilizer-free weak Galerkin (SFWG) finite element method for approximating a second-order linear viscoelastic wave equation with variable coefficients. For SFWG solutions, both semidiscrete and fully discrete convergence analysis is considered. The second-order Newmark scheme is employed to develop the fully discrete scheme. We obtain supercloseness of order two, which is two orders higher than the optimal convergence rate in L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }(L^{2})$\end{document} and L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }(H^{1})$\end{document} norms. In other words, we attain O(hk+3+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(h^{k+3}+\tau ^{2})$\end{document} in L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }(L^{2})$\end{document} norm and O(hk+2+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(h^{k+2}+\tau ^{2})$\end{document} in L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }(H^{1})$\end{document} norm. Several numerical experiments in a two-dimensional setting are carried out to validate our theoretical convergence findings. These experiments confirm the robustness and accuracy of the proposed method.
引用
收藏
相关论文
共 50 条
  • [1] Supercloseness analysis of a stabilizer-free weak Galerkin finite element method for viscoelastic wave equations with variable coefficients
    Kumar, Naresh
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (02)
  • [2] A Stabilizer-Free Weak Galerkin Finite Element Method for the Stokes Equations
    Feng, Yue
    Liu, Yujie
    Wang, Ruishu
    Zhang, Shangyou
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (01) : 181 - 201
  • [3] Supercloseness and postprocessing of stabilizer-free weak Galerkin finite element approximations for parabolic problems
    Zhu, Peng
    Xie, Shenglan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 119 : 79 - 88
  • [4] SUPERCLOSENESS ANALYSIS OF STABILIZER FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
    AL-Taweel, Ahmed
    Hussain, Saqib
    Wang, Xiaoshen
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 1963 - 1981
  • [5] A STABILIZER-FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE DARCY-STOKES EQUATIONS
    He, Kai
    Chen, Junjie
    Zhang, Li
    Ran, Maohua
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (04) : 459 - 475
  • [6] A STABILIZER-FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE DARCY-STOKES EQUATIONS
    He, Kai
    Chen, Junjie
    Zhang, Li
    Ran, Maohua
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (03) : 459 - 475
  • [7] A stabilizer-free weak Galerkin finite element method on polytopal meshes
    Ye, Xiu
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 371
  • [8] A stabilizer free weak Galerkin finite element method with supercloseness of order two
    Al-Taweel, Ahmed
    Wang, Xiaoshen
    Ye, Xiu
    Zhang, Shangyou
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1012 - 1029
  • [9] A stabilizer-free weak Galerkin mixed finite element method for the biharmonic equation
    Gu, Shanshan
    Huo, Fuchang
    Liu, Shicheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 176 : 109 - 121
  • [10] Weak Galerkin finite element method for viscoelastic wave equations
    Wang, Xiuping
    Gao, Fuzheng
    Sun, Zhengjia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375