Enhanced dataset synthesis using conditional generative adversarial networks

被引:0
|
作者
Ahmet Mert
机构
[1] Bursa Technical University,Department of Mechatronics Engineering
来源
Biomedical Engineering Letters | 2023年 / 13卷
关键词
Generative adversarial network; Feature extraction; Conditional GAN; Dataset synthesis; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Biomedical data acquisition, and reaching sufficient samples of participants are difficult and time ans effort consuming processes. On the other hand, the success rates of computer aided diagnosis (CAD) algorithms are sample and feature space depended. In this paper, conditional generative adversarial network (CGAN) based enhanced feature generation is proposed to synthesize large sample datasets having higher class separability. Twenty five percent of five medical datasets are used to train CGAN, and the synthetic datasets with any sample size are evaluated and compared to originals. Thus, new datasets can be generated with the help of the CGAN model and lower sample collection. It helps physicians decreasing sample collection processes, and it increases accuracy rates of the CAD systems using generated enhanced data with enhanced feature vectors. The synthesized datasets are classified using nearest neighbor, radial basis function support vector machine and artificial neural network to analyze the effectiveness of the proposed CGAN model.
引用
收藏
页码:41 / 48
页数:7
相关论文
共 50 条
  • [1] Enhanced dataset synthesis using conditional generative adversarial networks
    Mert, Ahmet
    BIOMEDICAL ENGINEERING LETTERS, 2023, 13 (01) : 41 - 48
  • [2] Enhanced Text-to-Image Synthesis Conditional Generative Adversarial Networks
    Tan, Yong Xuan
    Lee, Chin Poo
    Neo, Mai
    Lim, Kian Ming
    Lim, Jit Yan
    IAENG International Journal of Computer Science, 2022, 49 (01) : 1 - 7
  • [3] Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset
    Lyra, Simon
    Mustafa, Arian
    Rixen, Joeran
    Borik, Stefan
    Lueken, Markus
    Leonhardt, Steffen
    SENSORS, 2023, 23 (02)
  • [4] Multimodal attention for lip synthesis using conditional generative adversarial networks
    Vidal, Andrea
    Busso, Carlos
    SPEECH COMMUNICATION, 2023, 153
  • [5] Unpaired font family synthesis using conditional generative adversarial networks
    Ul Hassan, Ammar
    Ahmed, Hammad
    Choi, Jaeyoung
    KNOWLEDGE-BASED SYSTEMS, 2021, 229
  • [6] MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
    Kumar, Kundan
    Kumar, Rithesh
    de Boissiere, Thibault
    Gestin, Lucas
    Teoh, Wei Zhen
    Sotelo, Jose
    de Brebisson, Alexandre
    Bengio, Yoshua
    Courville, Aaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [7] Realistic Data Synthesis Using Enhanced Generative Adversarial Networks
    Baowaly, Mrinal Kanti
    Liu, Chao-Lin
    Chen, Kuan-Ta
    2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 289 - 292
  • [8] Text to Image Synthesis Using Stacked Conditional Variational Autoencoders and Conditional Generative Adversarial Networks
    Tibebu, Haileleol
    Malik, Aadin
    De Silva, Varuna
    INTELLIGENT COMPUTING, VOL 1, 2022, 506 : 560 - 580
  • [9] Conditional Independence Testing using Generative Adversarial Networks
    Bellot, Alexis
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [10] Ultrasonic imaging using conditional generative adversarial networks
    Molinier, Nathan
    Painchaud-April, Guillaume
    Le Duff, Alain
    Toews, Matthew
    Belanger, Pierre
    ULTRASONICS, 2023, 133