Parallelization strategies for markerless human motion capture

被引:0
作者
Alberto Cano
Enrique Yeguas-Bolivar
Rafael Muñoz-Salinas
Rafael Medina-Carnicer
Sebastián Ventura
机构
[1] University of Cordoba,Department of Computer Science and Numerical Analysis
[2] Maimonides Institute for Biomedical Research (IMIBIC),undefined
来源
Journal of Real-Time Image Processing | 2018年 / 14卷
关键词
Markerless motion capture (MMOCAP); GPU; Tracking;
D O I
暂无
中图分类号
学科分类号
摘要
Markerless motion capture (MMOCAP) is the problem of determining the pose of a person from images captured by one or several cameras simultaneously without using markers on the subject. Evaluation of the solutions is frequently the most time-consuming task, making most of the proposed methods inapplicable in real-time scenarios. This paper presents an efficient approach to parallelize the evaluation of the solutions in CPUs and GPUs. Our proposal is experimentally compared on six sequences of the HumanEva-I dataset using the CMAES algorithm. Multiple algorithm’s configurations were tested to analyze the best trade-off with regard to the accuracy and computing time. The proposed methods obtain speedups of 8×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} in multi-core CPUs, 30×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} in a single GPU and up to 110×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} using 4 GPUs.
引用
收藏
页码:453 / 467
页数:14
相关论文
共 113 条
[1]  
Multon F.(2009)Interactive animation of virtual humans based on motion capture data J. Vis. Comput. Animat. 20 491-500
[2]  
Kulpa R.(2008)Human motion tracking for rehabilitation-a survey Biomed. Signal Process. Control 3 1-18
[3]  
Hoyet L.(2006)A survey of advances in vision-based human motion capture and analysis Comput. Vis. Image Underst. 104 90-126
[4]  
Komura T.(2010)Humaneva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion Int. J. Comput. Vis. 87 4-27
[5]  
Zhou H(1998)Condensation—conditional density propagation for visual tracking Int. J. Comput. Vis. 29 5-28
[6]  
Huosheng H(2005)Articulated body motion capture by stochastic search Int. J. Comput. Vis. 61 185-205
[7]  
Moeslund T B(2006)A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach Ann. Biomed. Eng. 34 1019-1029
[8]  
Hilton A(2010)Markerless human articulated tracking using hierarchical particle swarm optimisation Image Vis. Comput. 28 1530-1547
[9]  
Krüger V(2008)Generative tracking of 3D human motion by hierarchical annealed genetic algorithm Pattern Recognit. 41 2470-2483
[10]  
Sigal L(2014)Comparing evolutionary algorithms and particle filters for markerless human motion capture Appl. Soft Comput. 17 153-166