A stabilized finite volume method for Stokes equations using the lowest order P1 − P0 element pair

被引:0
作者
Tie Zhang
Lixin Tang
机构
[1] Northeastern University,Department of Mathematics and the State Key Laboratory of SAPI, Research Center of National Metallurgical Automation
[2] Northeastern University,The State Key Laboratory of Synthetical Automation for Process Industries, Research Center of National Metallurgical Automation
来源
Advances in Computational Mathematics | 2015年 / 41卷
关键词
Finite volume element; Stokes problem; Stabilized method; − ; element pair; 65N30; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new stabilized finite volume method for Stokes problem using the lowest order P1 − P0 element pair. To offset the lack of the inf -sup condition, a simple jump term of discrete pressure is added to the continuity approximation equation. A discrete inf -sup condition is established for this stabilized scheme. The optimal error estimates are given in the H1- and L2-norms for velocity and in the L2-norm for pressure, respectively.
引用
收藏
页码:781 / 798
页数:17
相关论文
共 64 条
[1]  
Amara M(2001)An optimal C0 finite element algorithm for the 2D biharmonic problem: theoretical analysis and numerical results Numer. Math. 90 19-46
[2]  
Dabaghi F(2004)A taxonomy of consistently stabilized finite element methods for the Stokes problem SIAM J. Sci. Comput. 25 1585-1607
[3]  
Barth T(2001)A finite element pressure gradient stabilization for the Stokes equations based on local projections Calcolo 38 173-199
[4]  
Bochev P(1993)Stabilized finite element methods for the velocity pressure stress formulation of incompressible flows Comput. Methods Appl. Mech. Engrg. 104 31-48
[5]  
Gunzburger M(2000)Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection Comput. Methods Appl. Mech. Engrg. 182 277-300
[6]  
Shadid J(2006)Stabilization of low-order mixed finite elements for the Stokes equations SIAM J. Numer. Anal. 44 82-101
[7]  
Becker R(1991)On the finite volume element method Numer. Math. 58 713-735
[8]  
Braack M(1994)L2 estimate of linear element generalized difference schemes Acta. Sci. Nat. Univ. Sunyatseni 33 22-28
[9]  
Behr M(2002)A note on the optimal L2-estimate of the finite volume element method Adv. Comput. Math. 16 291-303
[10]  
Franca LP(2010)A new class of high order finite volume element methods for second order elliptic equations SIAM J. Numer. Anal. 47 4011-4023