Isomorphism Problem for Almost Simple Linear Groups

被引:0
作者
Farrokh Shirjian
Ali Iranmanesh
Farideh Shafiei
机构
[1] Tarbiat Modares University,Department of Pure Mathematics, Faculty of Mathematical Sciences
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Complex group algebras; character degrees; almost simple groups; Primary 20C15; 20C33;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to contribute to the Isomorphism Problem of complex group algebras which, informally, asks how much the complex group algebra of a finite group G over C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} know about the structure of the group. In this paper, we show that finite groups G, where PSLn(q)≤G≤PGLn(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {PSL}_n(q) \le G \le \mathrm{PGL}_n(q)$$\end{document}, are uniquely determined (up to isomorphism) by the structure of their complex group algebras. This completes the studies initiated by Shirjian and Iranmanesh (Commun Algebra 46(2):552–573, 2018) and extends the main result of Bessenrodt et al. (Algebra Number Theory 9(3):601–628, 2015) to the family of almost simple linear groups of arbitrary large rank.
引用
收藏
相关论文
共 43 条
[1]  
Balog A(2001)Prime power degree representations of the symmetric and alternating groups J. Lond. Math. Soc. 2 344-356
[2]  
Bessenrodt C(2002)Prime power degree representations of the double covers of the symmetric and alternating groups J. Lond. Math. Soc. 2 313-324
[3]  
Olsson JB(2015)Complex group algebras of the double covers of the symmetric and alternating groups Algebra Number Theory 9 601-628
[4]  
Ono K(2007)Character degree graphs that are complete graphs Proc. Am. Math. Soc. 135 671-676
[5]  
Bessenrodt C(1992)The characters of the group of rational points of a reductive group with non-connected centre J. Reine Angew. Math. 425 155-192
[6]  
Olsson JB(1983)Subgroups of prime power index in a simple group J. Algebra 81 304-311
[7]  
Bessenrodt C(2016)A characterization of Pub. Inst. Math. (Beograd) (N.S.) 99 257-264
[8]  
Nguyen HN(1988) by some irreducible complex character degrees Orbites Unipotentes et Représentations I Astérisque 168 157-166
[9]  
Olsson JB(2001)On the representations of reductive groups with disconnected centre Arch. Math. 77 461-468
[10]  
Tong-Viet HP(2008)Prime power degree representations of quasi-simple groups J. Algebra 320 2963-2980