Cubic Edge-Transitive bi-Cayley Graphs on Generalized Dihedral Group

被引:0
作者
Xue Wang
机构
[1] Beijing Jiaotong University,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2022年 / 45卷
关键词
Edge-transitive; Bi-Cayley graph; Girth; Generalized dihedral group; 20B25; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first prove that the connected cubic edge-transitive bi-Cayley graphs over a generalized dihedral group have girth 6. Using this, a complete classification is given of these graphs.
引用
收藏
页码:537 / 547
页数:10
相关论文
共 24 条
[1]  
Bosma W(1997)The MAGMA algebra system I: the user language J. Symbolic Comput. 24 235-265
[2]  
Cannon J(2002)Trivalent symmetric graphs on up to 768 vertices J. Combin. Math. Combin. Comput. 40 41-63
[3]  
Playoust C(2007)Symmetric cubic graphs of small girth J. Combin. Theory Ser. B 97 757-768
[4]  
Conder M(2020)Edge-transitive bi-Cayley graphs J. Combin. Theory Ser. B 145 264-306
[5]  
Dobcsányi P(2012)Characterization of edge-transitive J. Graph Theory 69 441-463
[6]  
Conder M(2000)-valent bicirculants Croat. Chemica Acta 73 969-981
[7]  
Nedela R(2007)Symmetries of hexagonal graphs on the torus Discrete Math. 307 567-578
[8]  
Conder M(2017)A classification of cubic bicirculants Discrete Math. 340 1757-1772
[9]  
Zhou J-X(2014)Trivalent vertex-transitive bi-dihedrants European J. Combin. 36 679-693
[10]  
Feng Y-Q(2016)Cubic bi-Cayley graphs over abelian groups J. Combin. Theory Ser. B 116 504-532