Flowerlike Fe2O3–polyaniline nanocomposite as electrode for supercapacitor

被引:0
作者
Asim Senapati
Amit K. Chakraborty
机构
[1] NIT Durgapur,Carbon Nanotechnology Lab, Department of Physics
[2] NIT Durgapur,Centre of Excellence in Advanced Materials
来源
Journal of Materials Science: Materials in Electronics | 2021年 / 32卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We report the synthesis of a binary nanocomposite of Fe2O3 and polyaniline (PAni) using a facile two-step process in which Fe2O3 nanohexagons are hydrothermally produced in the first step and then these nanohexagons are embedded in PAni via in situ polymerization of aniline. Electron microscopic and X-ray diffraction analyses of the synthesized Fe2O3–PAni composite revealed a flowerlike nanoscale architecture with the flowers ranging around 400 nm in size. When tested as electrode for supercapacitor, Fe2O3–PAni nanoflower composite exhibited specific capacitance as high as 1033 F/g at a scan rate of 5 mV/s and upto 82% charge retention after 1500 charge–discharge cycles. Electrochemical impedance spectroscopy (EIS) showed a much lower charge transfer and equivalent series resistance values for the Fe2O3–PAni nanocomposite electrode compared to that of bare Fe2O3 nanohexagon-based electrode. The outstanding electrochemical performance of the composite arises from the nanoflowerlike architecture of the electrode material and good chemical bonding between Fe2O3 and PAni, resulting in high surface area and good electrical conductivity. Thus, we show that the nanoflowerlike Fe2O3–PAni composite can be a good candidate as electrode material for supercapacitor.
引用
收藏
页码:27794 / 27800
页数:6
相关论文
共 149 条
[1]  
Winter M(2004)undefined Chem. Rev. 104 4245-4270
[2]  
Miller JR(2008)undefined Science 321 651-20171
[3]  
Simon P(2012)undefined Energy Environ. Sci. 5 9453-5469
[4]  
Zhang GQ(2014)undefined Science 343 1210-4202
[5]  
Wu HB(2021)undefined Opt. Mater. 111 110610-855
[6]  
Hoster HE(2018)undefined J. Mater. Sci. Mater. Electron. 29 20162-131
[7]  
Chan-Park MB(2008)undefined ACS Nano 2 643-1689
[8]  
Lou XW(2019)undefined J. Mater. Sci. Mater. Electron. 30 5464-11704
[9]  
Simon P(2012)undefined Adv. Mater. 24 4197-103
[10]  
Gogotsi Y(2011)undefined Nanoscale 3 839-4514