Modal complementary fusion network for RGB-T salient object detection

被引:0
|
作者
Shuai Ma
Kechen Song
Hongwen Dong
Hongkun Tian
Yunhui Yan
机构
[1] Northeastern University,School of Mechanical Engineering & Automation
[2] Northeastern University,Key Laboratory of Vibration and Control of Aero
来源
Applied Intelligence | 2023年 / 53卷
关键词
RGB-T salient object detection; Image quality; Modality reweight; Spatial complementary fusion;
D O I
暂无
中图分类号
学科分类号
摘要
RGB-T salient object detection (SOD) combines thermal infrared and RGB images to overcome the light sensitivity of RGB images in low-light conditions. However, the quality of RGB-T images could be unreliable under complex imaging scenarios, and direct fusion of these low-quality images will lead to sub-optimal detection results. In this paper, we propose a novel Modal Complementary Fusion Network (MCFNet) to alleviate the contamination effect of low-quality images from both global and local perspectives. Specifically, we design a modal reweight module (MRM) to evaluate the global quality of images and adaptively reweight RGB-T features by explicitly modelling interdependencies between RGB and thermal images. Furthermore, we propose a spatial complementary fusion module (SCFM) to explore the complementary local regions between RGB-T images and selectively fuse multi-modal features. Finally, multi-scale features are fused to obtain the salient detection result. Experiments on three RGB-T benchmark datasets demonstrate that our MCFNet achieved outstanding performance compared with the latest state-of-the-art methods. We have also achieved competitive results in RGB-D SOD tasks, which proves the generalization of our method. The source code is released at https://github.com/dotaball/MCFNet.
引用
收藏
页码:9038 / 9055
页数:17
相关论文
共 50 条
  • [1] Modal complementary fusion network for RGB-T salient object detection
    Ma, Shuai
    Song, Kechen
    Dong, Hongwen
    Tian, Hongkun
    Yan, Yunhui
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9038 - 9055
  • [2] Bidirectional Alternating Fusion Network for RGB-T Salient Object Detection
    Tu, Zhengzheng
    Lin, Danying
    Jiang, Bo
    Gu, Le
    Wang, Kunpeng
    Zhai, Sulan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 34 - 48
  • [3] Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection
    Gao, Wei
    Liao, Guibiao
    Ma, Siwei
    Li, Ge
    Liang, Yongsheng
    Lin, Weisi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2091 - 2106
  • [4] Weighted Guided Optional Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Li, Guoqiang
    Shi, Jie
    Xi, Jinwen
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (05)
  • [5] FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION
    Sun, Fengming
    Zhang, Kang
    Yuan, Xia
    Zhao, Chunxia
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1300 - 1304
  • [6] Revisiting Feature Fusion for RGB-T Salient Object Detection
    Zhang, Qiang
    Xiao, Tonglin
    Huang, Nianchang
    Zhang, Dingwen
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 1804 - 1818
  • [7] Asymmetric cross-modal activation network for RGB-T salient object detection
    Xu, Chang
    Li, Qingwu
    Zhou, Qingkai
    Jiang, Xiongbiao
    Yu, Dabing
    Zhou, Yaqin
    KNOWLEDGE-BASED SYSTEMS, 2022, 258
  • [8] CGFNet: Cross-Guided Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Song, Kechen
    Bao, Yanqi
    Huang, Liming
    Yan, Yunhui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2949 - 2961
  • [9] Edge-guided feature fusion network for RGB-T salient object detection
    Chen, Yuanlin
    Sun, Zengbao
    Yan, Cheng
    Zhao, Ming
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [10] ECFFNet: Effective and Consistent Feature Fusion Network for RGB-T Salient Object Detection
    Zhou, Wujie
    Guo, Qinling
    Lei, Jingsheng
    Yu, Lu
    Hwang, Jenq-Neng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1224 - 1235