New Tools for Classifying Hamiltonian Circle Actions with Isolated Fixed Points

被引:0
作者
Leonor Godinho
Silvia Sabatini
机构
[1] Universidade de Lisboa,Departamento de Matemática, Centro de Análise Matemática, Geometria e Sistemas Dinâmicos
来源
Foundations of Computational Mathematics | 2014年 / 14卷
关键词
Circle actions; Fixed points; Equivariant cohomology; 53D20; 19J35; 37B05;
D O I
暂无
中图分类号
学科分类号
摘要
For every compact almost complex manifold (M,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathsf {M},\mathsf {J})$$\end{document} equipped with a J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {J}$$\end{document}-preserving circle action with isolated fixed points, a simple algebraic identity involving the first Chern class is derived. This enables us to construct an algorithm to obtain linear relations among the isotropy weights at the fixed points. Suppose that M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {M}$$\end{document} is symplectic and the action is Hamiltonian. If the manifold satisfies an extra so-called positivity condition, then this algorithm determines a family of vector spaces that contain the admissible lattices of weights. When the number of fixed points is minimal, this positivity condition is necessarily satisfied whenever dim(M)≤6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim (\mathsf {M})\le 6$$\end{document} and, when dim(M)=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim (\mathsf {M})=8$$\end{document}, whenever the S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^1$$\end{document}-action extends to an effective Hamiltonian T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^2$$\end{document}-action, or none of the isotropy weights is 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}. Moreover, there are no known examples with a minimal number of fixed points contradicting this condition, and their existence is related to interesting questions regarding fake projective spaces. We run the algorithm for dim(M)≤8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim (\mathsf {M})\le 8$$\end{document}, quickly obtaining all the possible families of isotropy weights. In particular, we simplify the proofs of Ahara and Tolman for dim(M)=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim (\mathsf {M})=6$$\end{document} and, when dim(M)=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim (\mathsf {M})=8$$\end{document}, we prove that the equivariant cohomology ring, Chern classes, and isotropy weights agree with those of CP4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}P^4$$\end{document} with the standard S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^1$$\end{document}-action (thereby proving the symplectic Petrie conjecture in this setting).
引用
收藏
页码:791 / 860
页数:69
相关论文
empty
未找到相关数据