Duality for quasiconvex minimization over closed convex cones

被引:0
作者
Juan Enrique Martínez-Legaz
Wilfredo Sosa
机构
[1] Universitat Autònoma de Barcelona,Department d’Economia i d’Història Econòmica
[2] Barcelona Graduate School of Mathematics (BGSMath),Graduate School in Economics
[3] Catholic University of Brasilia,undefined
来源
Optimization Letters | 2022年 / 16卷
关键词
Quasiconvex optimization; Duality theory; Generalized conjugacy; Abstract convexity;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a general duality theorem in a generalized conjugacy framework, which generalizes a classical result on the minimization of a convex function over a closed convex cone. Our theorem yields two quasiconvex duality schemes; one of them is of the surrogate duality type and is applicable to problems having an evenly quasiconvex objective function, whereas the other one is applicable to problems with Lipschitz quasiconvex objective functions and yields duals whose objective functions do not involve any surrogate constraint.
引用
收藏
页码:1337 / 1352
页数:15
相关论文
共 20 条
[1]  
Balder EJ(1977)An extension of duality-stability relations to nonconvex optimization problems SIAM J. Control Optim. 15 329-343
[2]  
Crouzeix J-P(1974)Polaires quasi-convexes et dualité. (French) C. R. Acad. Sci. Paris Sér. A 279 955-958
[3]  
Dolecki S(1978)On SIAM J. Control Optim. 16 277-300
[4]  
Kurcyusz S(1970)-convexity in extremal problems Op. Res. 18 924-939
[5]  
Greenberg H-J(1973)Surrogate mathematical programming. Cahiers Centre Études Rech. Opér. 15 437-448
[6]  
Pierskalla WP(1968)Quasi-conjugate functions and surrogate duality SIAM J. Appl. Math. 16 1090-1095
[7]  
Greenberg HJ(1988)Quasi-convex programming Optimization 19 603-652
[8]  
Pierskalla WP(1993)Quasiconvex duality theory by generalized conjugation methods SIAM J. Optim. 3 800-825
[9]  
Luenberger DG(1970)-lower subdifferentiable functions J. Math. Pures Appl. 49 109-154
[10]  
Martínez-Legaz JE(1984)Inf-convolution, sous-additivité, convexit é des fonctions numériques. (French) Math. Program. 30 121-146