Time-reversal symmetry-breaking charge order in a kagome superconductor

被引:0
|
作者
C. Mielke
D. Das
J.-X. Yin
H. Liu
R. Gupta
Y.-X. Jiang
M. Medarde
X. Wu
H. C. Lei
J. Chang
Pengcheng Dai
Q. Si
H. Miao
R. Thomale
T. Neupert
Y. Shi
R. Khasanov
M. Z. Hasan
H. Luetkens
Z. Guguchia
机构
[1] Paul Scherrer Institute,Laboratory for Muon Spin Spectroscopy
[2] Physik-Institut,Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics
[3] Universität Zürich,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics
[4] Princeton University,School of Physical Sciences
[5] Chinese Academy of Sciences,Laboratory for Multiscale Materials Experiments
[6] University of Chinese Academy of Sciences,Department of Physics and Beijing Key Laboratory of Opto
[7] Paul Scherrer Institut,electronic Functional Materials and Micro
[8] Max-Planck-Institut für Festkörperforschung,nano Devices
[9] Renmin University of China,Department of Physics and Astronomy, Rice Center for Quantum Materials
[10] Rice University,Material Science and Technology Division
[11] Oak Ridge National Laboratory,Institut fur Theoretische Physik und Astrophysik
[12] Universitat Wurzburg,Department of Physics
[13] Indian Institute of Technology Madras,Princeton Institute for the Science and Technology of Materials
[14] Songshan Lake Materials Laboratory,Materials Sciences Division
[15] Dongguan,undefined
[16] Princeton University,undefined
[17] Lawrence Berkeley National Laboratory,undefined
[18] Quantum Science Center,undefined
来源
Nature | 2022年 / 602卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The kagome lattice1, which is the most prominent structural motif in quantum physics, benefits from inherent non-trivial geometry so that it can host diverse quantum phases, ranging from spin-liquid phases, to topological matter, to intertwined orders2–8 and, most rarely, to unconventional superconductivity6,9. Recently, charge sensitive probes have indicated that the kagome superconductors AV3Sb5 (A = K, Rb, Cs)9–11 exhibit unconventional chiral charge order12–19, which is analogous to the long-sought-after quantum order in the Haldane model20 or Varma model21. However, direct evidence for the time-reversal symmetry breaking of the charge order remains elusive. Here we use muon spin relaxation to probe the kagome charge order and superconductivity in KV3Sb5. We observe a noticeable enhancement of the internal field width sensed by the muon ensemble, which takes place just below the charge ordering temperature and persists into the superconducting state. Notably, the muon spin relaxation rate below the charge ordering temperature is substantially enhanced by applying an external magnetic field. We further show the multigap nature of superconductivity in KV3Sb5 and that the Tc/λab−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{{\rm{c}}}/{\lambda }_{ab}^{-2}$$\end{document} ratio (where Tc is the superconducting transition temperature and λab is the magnetic penetration depth in the kagome plane) is comparable to those of unconventional high-temperature superconductors. Our results point to time-reversal symmetry-breaking charge order intertwining with unconventional superconductivity in the correlated kagome lattice.
引用
收藏
页码:245 / 250
页数:5
相关论文
共 50 条
  • [1] Time-reversal symmetry-breaking charge order in a kagome superconductor
    Mielke, C.
    Das, D.
    Yin, J-X
    Liu, H.
    Gupta, R.
    Jiang, Y-X
    Medarde, M.
    Wu, X.
    Lei, H. C.
    Chang, J.
    Dai, Pengcheng
    Si, Q.
    Miao, H.
    Thomale, R.
    Neupert, T.
    Shi, Y.
    Khasanov, R.
    Hasan, M. Z.
    Luetkens, H.
    Guguchia, Z.
    NATURE, 2022, 602 (7896) : 245 - +
  • [2] Evidence for time-reversal symmetry-breaking kagome superconductivity
    Deng, Hanbin
    Liu, Guowei
    Guguchia, Z.
    Yang, Tianyu
    Liu, Jinjin
    Wang, Zhiwei
    Xie, Yaofeng
    Shao, Sen
    Ma, Haiyang
    Liege, William
    Bourdarot, Frederic
    Yan, Xiao-Yu
    Qin, Hailang
    Mielke, C.
    Khasanov, R.
    Luetkens, H.
    Wu, Xianxin
    Chang, Guoqing
    Liu, Jianpeng
    Christensen, Morten Holm
    Kreisel, Andreas
    Andersen, Brian Moller
    Huang, Wen
    Zhao, Yue
    Bourges, Philippe
    Yao, Yugui
    Dai, Pengcheng
    Yin, Jia-Xin
    NATURE MATERIALS, 2024, 23 (12) : 1639 - 1644
  • [3] Transport phenomena in time-reversal symmetry-breaking Kagome superconductors
    Yang Shuo-Ying
    Yin Jia-Xin
    ACTA PHYSICA SINICA, 2024, 73 (15)
  • [4] Time-reversal symmetry-breaking superconductivity
    Ghosh, H
    PHYSICAL REVIEW B, 1999, 59 (05) : 3357 - 3360
  • [5] SYSTEM WITH TIME-REVERSAL SYMMETRY-BREAKING
    SIMON, ME
    ALIGIA, AA
    PHYSICAL REVIEW B, 1992, 46 (06): : 3676 - 3679
  • [6] Time-reversal symmetry breaking in a Re-based kagome lattice superconductor
    Mandal, Manasi
    Kataria, A.
    Meena, P. K.
    Kushwaha, R. K.
    Singh, D.
    Biswas, P. K.
    Stewart, R.
    Hillier, A. D.
    Singh, R. P.
    PHYSICAL REVIEW B, 2025, 111 (05)
  • [7] Depth-dependent study of time-reversal symmetry-breaking in the kagome superconductor AV3Sb5
    Graham, J. N.
    Mielke, C.
    Das, D.
    Morresi, T.
    Sazgari, V.
    Suter, A.
    Prokscha, T.
    Deng, H.
    Khasanov, R.
    Wilson, S. D.
    Salinas, A. C.
    Martins, M. M.
    Zhong, Y.
    Okazaki, K.
    Wang, Z.
    Hasan, M. Z.
    Fischer, M. H.
    Neupert, T.
    Yin, J. X.
    Sanna, S.
    Luetkens, H.
    Salman, Z.
    Bonfa, P.
    Guguchia, Z.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [8] Time-reversal symmetry-breaking in noncentrosymmetric superconductors
    Robins, Allyn
    Brydon, Philip
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (40)
  • [9] Comment on "Time-reversal symmetry-breaking superconductivity"
    Adhikari, SK
    PHYSICAL REVIEW B, 2001, 63 (22):
  • [10] Time-reversal symmetry-breaking nematic superconductivity in FeSe
    Kang, Jian
    Chubukov, Andrey, V
    Fernandes, Rafael M.
    PHYSICAL REVIEW B, 2018, 98 (06)