Necessary and sufficient condition for the stabilization of the solution of the cauchy problem for a special heat equation

被引:0
作者
V. D. Repnikov
T. A. Samokhina
机构
[1] Voronezh State University,
来源
Differential Equations | 2012年 / 48卷
关键词
Differential Equation; Cauchy Problem; Heat Equation; Position Vector; Bounded Function;
D O I
暂无
中图分类号
学科分类号
摘要
In the space ℝn, we obtain the solution of the Cauchy problem for the equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u'_t = a^2 (\bar x|\bar x|^{ - 1} )u''_{rr} $\end{document} degenerating at the origin, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar x = (x_1 ,x_2 ,...,x_n )$\end{document} and urr″ is the second derivative in the direction of the position vector of the point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar x$\end{document}. We study the stabilization of this solution.
引用
收藏
页码:891 / 895
页数:4
相关论文
共 3 条
[1]  
Repnikov V.D.(1967)A New Proof of the Theorem on the Stabilization of the Solution of the Cauchy Problem for the Heat Equation Mat. Sb. 73 155-159
[2]  
Eidel’man S.D.(2009)Linear Differential Equations in Differ. Uravn. 45 1392-1397
[3]  
Repnikov V.D.(undefined) with Derivatives in the Direction of the Position Vector undefined undefined undefined-undefined