Strong Differential Subordination and Sharp Inequalities for Orthogonal Processes

被引:0
作者
Adam Osękowski
机构
[1] University of Warsaw,Department of Mathematics, Informatics and Mechanics
来源
Journal of Theoretical Probability | 2009年 / 22卷
关键词
Martingale; Submartingale; Orthogonal processes; Differential subordination; Strong differential subordination; 60G44; 60G48;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a strong differential α-subordination for continuous-time processes, which generalizes this notion from the discrete-time setting, due to Burkholder and Choi. Then we determine the best constants in the Lp estimates for a nonnegative submartingale and its strong α-subordinate under an additional assumption on the orthogonality of these two processes.
引用
收藏
页码:837 / 855
页数:18
相关论文
共 12 条
[1]  
Bañuelos R.(1995)Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transformations Duke Math. J. 80 575-600
[2]  
Wang G.(1996)Orthogonal martingales under differential subordination and application to Riesz transforms Ill. J. Math. 40 678-691
[3]  
Bañuelos R.(1977)Exit times of Brownian motion, harmonic majorization and Hardy spaces Adv. Math. 26 182-205
[4]  
Wang G.(1984)Boundary value problems and sharp inequalities for martingale transforms Ann. Probab. 12 647-702
[5]  
Burkholder D.L.(1994)Strong differential subordination and stochastic integration Ann. Probab. 22 995-1025
[6]  
Burkholder D.L.(1996)A submartingale inequality Proc. Am. Math. Soc. 124 2549-2553
[7]  
Burkholder D.L.(1996)The Beurling–Ahlfors transform in ℝ J. Reine Angew. Math. 473 25-57
[8]  
Choi C.(2005) and related singular integrals Trans. Am. Math. Soc. 357 1545-1564
[9]  
Iwaniec T.(1995)A sharp weak type ( Ann. Probab. 23 522-551
[10]  
Martin G.(undefined), undefined undefined undefined-undefined