Unipotent Elements of Nonprime Order in Representations of the Classical Algebraic Groups: Two Big Jordan Blocks

被引:0
作者
Suprunenko I.D. [1 ]
机构
[1] Institute of Mathematics, National Academy of Sciences of Belarus, Minsk
关键词
Algebraic Group; Direct Summand; Composition Factor; Chevalley Group; Jordan Block;
D O I
10.1007/s10958-014-1863-6
中图分类号
学科分类号
摘要
For irreducible rational representations of the classical algebraic groups in characteristic p > 2, which are not equivalent to the composition of a group morphism and the standard representation, it is proved that usually the image of a unipotent element of order ps+1 > p has at least two Jordan blocks of size > ps; all exceptions are indicated explicitly. As a corollary, irreducible rational representations of these groups whose images contain unipotent elements with just one Jordan block of size > 1 are classified. © 2014 Springer Science+Business Media New York.
引用
收藏
页码:350 / 374
页数:24
相关论文
共 32 条
  • [1] Borel A., Properties and linear representations of Chevalley groups, Lect. Notes Math., 131, pp. 1-55, (1970)
  • [2] Bourbaki N., Groupes Et algèbres De Lie, Chaps. IV-VI, (1968)
  • [3] Bourbaki N., Groupes Et algèbres De Lie, Chaps. VII-VIII, (1975)
  • [4] Carter R.W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, (1985)
  • [5] Feit W., The Representation Theory of Finite Groups, (1982)
  • [6] Gudivok P.M., Rudko V.P., Tensor Products of Representations of Finite Groups [in Russian], (1985)
  • [7] Jantzen J.C., Darstellungen halbeinfacher algebraicher Gruppen und zugeordnetekontravariante Formen, Bonner Math. Schr., 67, (1973)
  • [8] Jantzen J.C., Representations of Algebraic Groups, (2003)
  • [9] Liebeck M.W., Seitz G.M., Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras, (2012)
  • [10] Lubeck F., Small degree representations of finite Chevalley groups in defining characteristic, London Math. Soc. J. Comput. Math., 4, pp. 135-169, (2001)