On a family of diophantine triples {K,A2K + 2A, (A + 1)2K + 2(A + 1)} with two parameters II

被引:0
作者
Bo He
Alain Togbé
机构
[1] ABa Teacher’s College Wenchuan,Department of Mathematics
[2] Purdue University North Central,Department of Mathematics
来源
Periodica Mathematica Hungarica | 2012年 / 64卷
关键词
Diophantine tuples; simultaneous Diophantine equations; 11D09; 11D25; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
Let A and k be positive integers. In this paper, we study the Diophantine quadruples \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ k,A^2 k + 2A,(A + 1)^2 k + 2(A + 1)d\} .$$\end{document} If d is a positive integer such that the product of any two distinct elements of the set increased by 1 is a perfect square, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{gathered} d = (4A^4 + 8A^3 + 4A^2 )k^3 + (16A^3 + 24A^2 + 8A)k^2 + \hfill \\ + (20A^2 + 20A + 4)k + (8A + 4) \hfill \\ \end{gathered} $$\end{document} for A ≥ 52330 and any k. This extends our result obtained in [4].
引用
收藏
页码:1 / 10
页数:9
相关论文
共 8 条
[1]  
Dujella A.(2001)An absolute bound for the size of Diophantine J. Number Theory 89 126-150
[2]  
Dujella A.(2004)-tuples J. Reine Angew. Math. 566 183-214
[3]  
He B.(2011)There are only finitely many Diophantine quintuples J. Number Theory 131 120-137
[4]  
Togbé A.(2009)On the Acta Math. Hungar. 124 99-113
[5]  
He B.(1993)(−1)-triple {1, J. Number Theory 44 172-177
[6]  
Togbé A.(1998) + 1, Acta Arith. 86 101-111
[7]  
Mignotte M.(undefined) + 2 undefined undefined undefined-undefined
[8]  
Mignotte M.(undefined) + 2} and its unique undefined undefined undefined-undefined