Exact traveling wave solutions and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} stability for the shallow water wave model of moderate amplitude

被引:0
作者
Ying Wang
Yunxi Guo
机构
[1] Sichuan University of Science and Engineering,College of Science
关键词
Travelling wave; Existence; stability; The model equation for shallow water of moderate amplitude; 35G25; 35C05; 35B35;
D O I
10.1007/s13324-016-0139-3
中图分类号
学科分类号
摘要
In this paper, we developed, for the first time, the exact expressions of several periodic travelling wave solutions and a solitary wave solution for a shallow water wave model of moderate amplitude. Then, we present the existence theorem of the global weak solutions. Finally, we prove the stability of solution in L1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}(R)$$\end{document} space for the Cauchy problem of the equation.
引用
收藏
页码:245 / 254
页数:9
相关论文
共 43 条
[1]  
Constantin A(2009)The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations Arch. Rational Mech. Anal. 192 165-186
[2]  
Lannes D(2000)Stability of a class of solitary waves in compressible elastic rods Phys. Lett. A 270 140-148
[3]  
Constantin A(2000)Solitary shock waves and other travelling waves in a general com- pressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A, Math. Phys Eng. Sci. 456 331-363
[4]  
Strauss WA(2013)On the Cauchy problem for a model equation for shallow water waves of moderate amplitude Nonlinear Anal. RWA 14 2022-2026
[5]  
Dai HH(2013)Orbital stability of solitary waves of moderate amplitude in shallow water J. Differential Equations 255 254-263
[6]  
Huo Y(2013)On the Cauchy problem for the integrable Camassa-Holm type equation with cubic nonlinearity J. Differential Equations 255 1905-1938
[7]  
Duruk Mutlubas N(2012)Solitary traveling waves of moderate amplitude J. Nonlinear Math. Phys. 19 1240010-2873
[8]  
Duruk Mutlubas N(2010)New exact solutions for an (N+1)-dimensional generalized Boussinesq equation Nonlinear Anal. A 72 2863-512
[9]  
Geyer A(2007)Persistence properties and unique continuation of solutions of the Camassa-Holm equation Comm. Math. Phys. 271 511-243
[10]  
Fu Y(1970)First order quasi-linear equations in several independent variables Math. USSR Sb. 10 217-717