Künstliche Intelligenz in der Pathologie – wie, wo und warum?Artificial intelligence for pathology—how, where, and why?

被引:0
作者
Peter Schüffler
Katja Steiger
Carolin Mogler
机构
[1] Technische Universität München,Institut für Pathologie, TUM School of Medicine and Health
[2] Technische Universität München,TUM School of Computation, Information and Technology
[3] Munich Center for Machine Learning (MCML),undefined
关键词
Digitale Pathologie; Automatisierung; Digitale Medizin; Qualitätskontrolle; Qualitätssicherung; Digital pathology; Automation; Digital medicine; Quality control; Quality assurance;
D O I
10.1007/s00292-024-01314-9
中图分类号
学科分类号
摘要
Künstliche Intelligenz verspricht viele Erneuerungen und Erleichterungen in der Pathologie, wirft jedoch ebenso viele Fragen und Ungewissheiten auf. In diesem Artikel geben wir eine kurze Übersicht über den aktuellen Stand, die bereits erreichten Ziele vorhandener Algorithmen und immer noch ausstehende Herausforderungen.
引用
收藏
页码:198 / 202
页数:4
相关论文
共 84 条
[1]  
Schüffler PJ(2021)Integrated digital pathology at scale: a solution for clinical diagnostics and cancer research at a large academic medical center J Am Med Inform Assoc 28 1874-1884
[2]  
Geneslaw L(2019)Complete digital pathology for routine histopathology diagnosis in a multicenter hospital network Arch Pathol Lab Med 144 221-228
[3]  
Yarlagadda DVK(2023)Digital pathology implementation in a private laboratory: the CEDAP experience J Pathol Inform 14 100180-928
[4]  
Retamero JA(2019)Whole slide imaging equivalency and efficiency study: experience at a large academic center Mod Pathol 32 916-1309
[5]  
Aneiros-Fernandez J(2019)Clinical-grade computational pathology using weakly supervised deep learning on whole slide images Nat Med 25 1301-232
[6]  
del Moral RG(2020)Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study Lancet Oncol 21 222-671
[7]  
Ferreira I(2021)Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists Mod Pathol 34 660-1416.e11
[8]  
Montenegro CS(2020)Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning Gastroenterology 159 1406-7
[9]  
Coelho D(2019)HistoQC: an open-source quality control tool for digital pathology slides jco Clin Cancer Inform 3 1-58844
[10]  
Hanna MG(2022)The devil is in the details: whole slide image acquisition and processing for artifacts detection, color variation, and data augmentation: a review IEEE Access 10 58821-151