Stability of the High Frequency Fast Multipole Method for Helmholtz’ Equation in Three Dimensions

被引:0
作者
Martin Nilsson
机构
[1] Uppsala University,Department of Information Technology, Scientific Computing
来源
BIT Numerical Mathematics | 2004年 / 44卷
关键词
Fast Multipole Method; Helmholtz’ equation; stability; error estimate;
D O I
暂无
中图分类号
学科分类号
摘要
Stability limits for the high frequency plane wave expansion, which approximates the free space Green’s function in Helmholtz’ equation, are derived. This expansion is often used in the Fast Multipole Method for scattering problems in electromagnetics and acoustics. It is shown that while the original approximation of the Green’s function, based on Gegenbauer’s addition theorem, is stable except for overflows, the plane wave expansion becomes unstable due to errors from roundoff, interpolation, choice of quadrature rule and approximation of the translation operator. Numerical experiments validate the theoretical estimates.
引用
收藏
页码:773 / 791
页数:18
相关论文
共 17 条
[1]  
Coifman R.(1993)The fast multipole method for the wave equation: A pedestrian prescription IEEE Trans. Antennas and Propagation 35 7-12
[2]  
Rokhlin V.(2000)The fast multipole method I: Error analysis and asymptotic complexity SIAM J. Numer. Anal. 38 98-128
[3]  
Wandzura S.(2000)The fast multipole method: Numerical implementation J. Comput. Phys. 160 195-240
[4]  
Darve E.(1998)Accelerating fast multipole methods for the Helmholtz equation at low frequencies IEEE Comput. Sci. and Eng. 5 32-38
[5]  
Darve E.(2003)Error control of the translation operator in 3D MLFMA Microwave Opt. Tech. Lett. 37 184-188
[6]  
Greengard L.(2003)Numerical accuracy of multipole expansion for 2D MLFMA IEEE Trans. Antennas and Propagation 51 1883-1890
[7]  
Huang J.(1993)Diagonal forms of translation operators for the Helmholtz equation in three dimensions Appl. Comput. Harmon. Anal. 1 82-93
[8]  
Rokhlin V.(1995)Multilevel fast multipole algorithm for solving combined field integral equation of electromagnetic scattering Microwave Opt. Tech. Lett. 10 14-19
[9]  
Wandzura S.(undefined)undefined undefined undefined undefined-undefined
[10]  
Hastriter M. L.(undefined)undefined undefined undefined undefined-undefined