Synthesis of patterned enzyme–metal–organic framework composites by ink-jet printing

被引:44
作者
Hou M. [1 ]
Zhao H. [2 ]
Feng Y. [1 ]
Ge J. [1 ]
机构
[1] Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing
[2] Beijing National Day School, Beijing
基金
中国国家自然科学基金;
关键词
Immobilized enzyme; Ink-jet printing; Metal–organic frameworks;
D O I
10.1186/s40643-017-0171-7
中图分类号
学科分类号
摘要
Objectives: This report explores the possibility of synthesizing enzyme–metal–organic framework (MOF) composites by ink-jet printing. Results: This study demonstrates that the direct synthesis of patterned enzyme–metal–organic framework (MOF) composites on various substrates including paper and polymeric films can be readily achieved by ink-jet printing bio-inks containing protein molecules, metal ions, and organic ligands loaded, respectively, in different cartridges. The formed Cytochrome c (Cyt c)–MOF composites on filter paper by ink-jet printing can be used for rapid detection of hydrogen peroxide in solution. Conclusions: This technique opens possibilities of scalable, controllable, and designable fabrication of functional protein–MOF hybrid surface with promising applications in future bio-related application fields such as biosensing, wearable bioelectronics, artificial biomimetic membranes, and tissue engineering.[Figure not available: see fulltext.]. © 2017, The Author(s).
引用
收藏
相关论文
共 32 条
[1]  
Chen Y., Lykourinou V., Vetromile C., Hoang T., Ming L., Larsen R.W., Ma S., How can proteins enter the interior of a MOF? Investigation of Cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows, J Am Chem Soc, 134, pp. 13188-13191, (2012)
[2]  
(2017)
[3]  
Deng H., Grunder S., Cordova K.E., Valente C., Furukawa H., Hmadeh M., Gandara F., Whalley A.C., Liu Z., Asahina S., Kazumori H., O'Keeffe M., Terasaki O., Stoddart J.F., Yaghi O.M., Large-pore apertures in a series of metal-organic frameworks, Science, 336, pp. 1018-1023, (2012)
[4]  
Feng D., Liu T., Su J., Bosch M., Wei Z., Wan W., Yuan D., Chen Y., Wang X., Wang K., Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation, Nat Commun, 6, (2015)
[5]  
Furukawa H., Cordova K.E., O'Keeffe M., Yaghi O.M., The chemistry and applications of metal-organic frameworks, Science, 341, (2013)
[6]  
Hayashi H., Cote A.P., Furukawa H., O'Keeffe M., Yaghi O.M., Zeolite a imidazolate frameworks, Nat Mater, 6, pp. 501-506, (2007)
[7]  
He H., Han H., Shi H., Tian Y., Sun F., Song Y., Li Q., Zhu G., Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization: a biocatalyst for ester hydrolysis and kinetic resolution, ACS Appl Mater Interfaces, 8, pp. 24517-24524, (2016)
[8]  
Hou M., Ge J., Armoring enzymes by metal-organic frameworks by the coprecipitation method, Methods Enzymol, 590, pp. 59-75, (2017)
[9]  
Hsu C., Chang K., Kuo J., Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode, Food Control, 19, pp. 223-230, (2008)
[10]  
Jung S., Kim Y., Kim S., Kwon T.H., Huh S., Park S., Bio-functionalization of metal-organic frameworks by covalent protein conjugation, Chem Commun (Camb), 47, pp. 2904-2906, (2011)