Toeplitz operators on the polyharmonic Bergman space

被引:0
作者
Bo Zhang
Yixin Yang
Yufeng Lu
机构
[1] Yantai University,School of Mathematics and Information Sciences
[2] Dalian University of Technology,School of Mathematical Sciences
来源
Annals of Functional Analysis | 2022年 / 13卷
关键词
Toeplitz operator; Polyharmonic Bergman space; Finite rank; Commutator; 47B35; 46E22;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we determine the reproducing kernel function for the n-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-$$\end{document}harmonic Bergman space bn2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^{2}_{n}({\mathbb {D}})$$\end{document} and show that the commutator of any two Toeplitz operators can not have odd rank. Finally, we compute the rank of the commutator of Tz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{z}$$\end{document} and Tz2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{z^{2}}$$\end{document} on b22(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^{2}_{2}({\mathbb {D}})$$\end{document}.
引用
收藏
相关论文
共 30 条
  • [1] Begehr H(2008)A Dirichlet problem for polyharmonic functions AAnn. Mat. Pura Appl. 187 435-457
  • [2] Du J(2014)Weighted integrability of polyharmonic functions Adv. Math. 264 464-505
  • [3] Wang Y(1964)Algebraic properties of Toeplitz operators J. Reine. Angew. Math. 213 89-102
  • [4] Borichev A(2013)Ranks of commutators of Toeplitz operators on the harmonic Bergman space Integr. Equ. Oper. Theory. 75 31-38
  • [5] Hedemnahn H(2015)Ranks of complex skew symmetric operators and applications to Toeplitz operators J. Math. Anal. Appl. 425 734-747
  • [6] Brown A(2011)Toeplitz products with pluriharmonic symbols on the Hardy space over the ball J. Math. Anal. Appl. 381 365-382
  • [7] Halmos P(2012)Toeplitz operators on Bergman spaces of polyanalytic functions Bull. Lond. Math. Soc 44 961-973
  • [8] Chen Y(2008)Finite rank commutator of Toeplitz operators or Hankel operators Houston. J. Math. 34 1099-1119
  • [9] Koo H(2002)Green functions and eigenfunction expansions for the square of the Laplace-Beltrami operator on plane domains Ann. Math. 181 463-500
  • [10] Lee YJ(2007)Finite rank commutators and semicommutators of Toeplitz operators with harmonic symbols Ill. J. Math. 51 583-596