c − a from the N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} superconformal index

被引:0
作者
Arash Arabi Ardehali
James T. Liu
Phillip Szepietowski
机构
[1] The University of Michigan,Michigan Center for Theoretical Physics, Randall Laboratory of Physics
[2] University of Virginia,Department of Physics
关键词
Supersymmetric gauge theory; Anomalies in Field and String Theories; AdSCFT Correspondence;
D O I
10.1007/JHEP12(2014)145
中图分类号
学科分类号
摘要
We present a prescription for obtaining the difference of the central charges, c−a, of a four dimensional superconformal quantum field theory from its single-trace index. The formula is derived from a one-loop holographic computation, but is expected to be valid independent of holography. We demonstrate the prescription with several holographic and non-holographic examples. As an application of our formula, we show the AdS/CFT matching of c − a for arbitrary toric quiver CFTs without adjoint matter that are dual to smooth Sasaki-Einstein 5-manifolds.
引用
收藏
相关论文
共 77 条
[1]  
Romelsberger C(2006)Counting chiral primaries in N = 1, D = 4 superconformal field theories Nucl. Phys. B 747 329-undefined
[2]  
Kinney J(2007)An index for 4 dimensional super conformal theories Commun. Math. Phys. 275 209-undefined
[3]  
Maldacena JM(2009)Applications of the superconformal index for protected operators and q-hypergeometric identities to N = 1 dual theories Nucl. Phys. B 818 137-undefined
[4]  
Minwalla S(2011)Elliptic hypergeometry of supersymmetric dualities Commun. Math. Phys. 304 797-undefined
[5]  
Raju S(2011)On the superconformal index of N = 1 IR fixed points: a holographic check JHEP 03 041-undefined
[6]  
Dolan FA(1998)Nonperturbative formulas for central functions of supersymmetric gauge theories Nucl. Phys. B 526 543-undefined
[7]  
Osborn H(2012)Logarithmic corrections to N = 2 black hole entropy: an infrared window into the microstates Gen. Relat. Gravit. 44 1207-undefined
[8]  
Spiridonov VP(2013)Logarithmic corrections to schwarzschild and other non-extremal black hole entropy in different dimensions JHEP 04 156-undefined
[9]  
Vartanov GS(2014)Logarithmic corrections to N ≥ 2 black hole entropy Phys. Rev. D 90 043011-undefined
[10]  
Gadde A(2009)Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory JHEP 01 044-undefined