On semistable principal bundles over a complex projective manifold, II

被引:0
作者
Indranil Biswas
Ugo Bruzzo
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Scuola Internazionale Superiore di Studi Avanzati,undefined
[3] Istituto Nazionale di Fisica Nucleare,undefined
来源
Geometriae Dedicata | 2010年 / 146卷
关键词
Principal bundle; Pseudostability; Numerical effectiveness; 32L05; 14L10; 14F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, ω) be a compact connected Kähler manifold of complex dimension d and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_G\,\longrightarrow\,X}$$\end{document} a holomorphic principal G–bundle, where G is a connected reductive linear algebraic group defined over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document}. Let Z(G) denote the center of G. We prove that the following three statements are equivalent: There is a parabolic subgroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P\,\subset\,G}$$\end{document} and a holomorphic reduction of structure group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_P\,\subset\,E_G}$$\end{document} to P, such that the corresponding L(P)/Z(G)–bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{L(P)/Z(G)}\,:=\,E_P(L(P)/Z(G))\,\longrightarrow\,X$$\end{document}admits a unitary flat connection, where L(P) is the Levi quotient of P. The adjoint vector bundle ad(EG) is numerically flat.The principal G–bundle EG is pseudostable, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int\limits_X c_2({\rm ad}(E_G))\omega^{d-2}\,=\,0.$$\end{document} If X is a complex projective manifold, and ω represents a rational cohomology class, then the third statement is equivalent to the statement that EG is semistable with c2(ad(EG)) = 0.
引用
收藏
页码:27 / 41
页数:14
相关论文
共 19 条
  • [1] Anchouche B.(2001)Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold Am. J. Math. 123 207-228
  • [2] Biswas I.(1957)Complex analytic connections in fibre bundles Trans. Am. Math. Soc. 85 181-207
  • [3] Atiyah M.F.(2008)Connections and Higgs fields on a principal bundle Ann. Glob. Anal. Geom. 33 19-46
  • [4] Biswas I.(1979)Holomorphic tensors and vector bundles on projective varieties Math. USSR Izv. 13 499-555
  • [5] Gómez T.L.(1994)Compact complex manifolds with numerically effective tangent bundles J. Alg. Geom. 3 295-345
  • [6] Bogomolov F.A.(1987)Infinite determinants, stable bundles and curvature Duke Math. J. 54 231-247
  • [7] Demailly J.-P.(1956)Fully reducible subgroups of algebraic groups Am. J. Math. 78 200-221
  • [8] Peternell T.(1984)Some remarks on the instability flag Tôhoku Math. J. 36 269-291
  • [9] Schneider M.(1975)Stable principal bundles on a compact Riemann surface Math. Ann. 213 129-152
  • [10] Donaldson S.K.(1988)Einstein–Hermitian connections on principal bundles and stability J. Reine Angew. Math. 390 21-31