Study of the Mechanical Properties and Fracture Evolution of Sandstone with Different Moisture Contents Under True Triaxial Stress

被引:0
|
作者
Weinan Wang
Qiangling Yao
Chuanjin Tang
Xuehua Li
Zhaohui Chong
机构
[1] China University of Mining and Technology,Key Laboratory of Deep Coal Resource Mining, Ministry of Education
[2] China University of Mining and Technology,School of Mines
[3] University of Nottingham,Department of Civil Engineering
来源
Arabian Journal for Science and Engineering | 2021年 / 46卷
关键词
Water–rock interaction; True triaxial; CT scanning; Sandstone; Mechanical properties; Fracture evolution;
D O I
暂无
中图分类号
学科分类号
摘要
The typical sandstone of the Shendong mining area, China, was considered as the research object in order to determine the mechanical properties and fracture evolution characteristics under true triaxial stress and different moisture contents by X-ray diffraction, true triaxial mechanical test, and CT scanning. The results show that the main mineral components of the sandstone are quartz, plagioclase, potassium feldspar, siderite, and clay minerals (kaolinite, illite, and chlorite), with clay minerals accounting for 25.7%. When σ2 > σ3, after sandstone failure, compressive deformation occurs in the ε2 direction, while expansion deformation occurs in the ε3 direction. A larger σ3 corresponds to a higher moisture content and a greater ductility of sandstone. σ3 influences the sandstone failure mode more significantly, compared with σ2 and moisture content. For a constant moisture content, the sandstone’s compressive strength and the Young’s modulus increase with increase in σ3. On the contrary, as σ2 increases, the compressive strength and the Young’s modulus first increase and then decrease for all moisture contents. Additionally, when the stress state is kept the same, as the moisture content increases, the compressive strength and the Young’s modulus of the sandstone decrease. Similarly, for the same moisture content, with increase in σ2, the smaller the number of fractures after sandstone failure and the more regular the fracture distribution. Moreover, under the same stress conditions, dry sandstone has the least regular fracture development after failure, followed by saturated sandstone, while the sandstone with natural moisture content has the most regular fracture development after failure.
引用
收藏
页码:11497 / 11518
页数:21
相关论文
共 50 条
  • [1] Study of the Mechanical Properties and Fracture Evolution of Sandstone with Different Moisture Contents Under True Triaxial Stress
    Wang, Weinan
    Yao, Qiangling
    Tang, Chuanjin
    Li, Xuehua
    Chong, Zhaohui
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (11) : 11497 - 11518
  • [2] Mechanical Properties of Deep Sandstone Under True Triaxial Stress
    Wang Z.-C.
    Shi W.-C.
    Kong R.
    Guo J.-F.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2023, 44 (05): : 689 - 696
  • [3] Mechanical characteristics of deep sandstone under different true triaxial stress paths
    Zhang, Junwen
    Fan, Wenbing
    Song, Zhixiang
    Huo, Yinghao
    Ding, Lujiang
    Yao, Zixiang
    Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 2021, 50 (01): : 106 - 114
  • [4] Energy evolution of sandstone under true triaxial cyclic principal stress
    Zhao G.-M.
    Liu Z.-X.
    Meng X.-R.
    Zhang R.-F.
    Gu Q.-H.
    Qi M.-J.
    Yantu Lixue/Rock and Soil Mechanics, 2023, 44 (07): : 1875 - 1890
  • [5] Study on mechanical properties and fracture modes of sandstone with cracks under triaxial compression
    Liu, Yongsheng
    Liu, Wang
    Wang, Cui
    ENGINEERING REPORTS, 2024, 6 (03)
  • [6] Study on the Evolution of Rock Fracture under True Triaxial Intermediate Principal Stress
    Li, Zhaolin
    Wang, Lianguo
    Wang, Lei
    Fan, Hao
    Ren, Bo
    Ding, Ke
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2024, 24 (01)
  • [7] Mechanical and Energy Evolution Characteristics of Sandstone under True Triaxial Cyclic Loading
    Dong, Chunliang
    Fan, Chaotao
    Lu, Xiaoyu
    Zhao, Guangming
    Qi, Minjie
    Qin, Ruipeng
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [8] Energy evolution characteristics of deep sandstone with different true triaxial stress paths
    Zhang, Junwen
    Fan, Wenbing
    Niu, Weimin
    Wang, Shanyong
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2022, 8 (02)
  • [9] Energy evolution characteristics of deep sandstone with different true triaxial stress paths
    Junwen Zhang
    Wenbing Fan
    Weimin Niu
    Shanyong Wang
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8
  • [10] Mechanical and damage evolution properties of sandstone under triaxial compression
    Zong Yijiang
    Han Lijun
    Wei Jianjun
    Wen Shengyong
    International Journal of Mining Science and Technology, 2016, 26 (04) : 601 - 607