Extremes of stationary Gaussian storage models

被引:0
作者
Krzysztof Dębicki
Peng Liu
机构
[1] University of Wrocław,Mathematical Institute
[2] University of Lausanne,Department of Actuarial Science
来源
Extremes | 2016年 / 19卷
关键词
Storage process; Gaussian process; Pickands constant; Strong Piterbarg property; Primary 60G15; Secondary 60G70;
D O I
暂无
中图分类号
学科分类号
摘要
For the stationary storage process {Q(t), t ≥ 0}, with Q(t)=sups≥tX(s)−X(t)−c(s−t)β,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ Q(t)=\sup _{s\ge t}\left (X(s)-X(t)-c(s-t)^{\beta }\right ),$\end{document} where {X(t), t ≥ 0} is a centered Gaussian process with stationary increments, c > 0 and β > 0 is chosen such that Q(t) is finite a.s., we derive exact asymptotics of ℙsupt∈[0,Tu]Q(t)>u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {P}\left (\sup _{t\in [0,T_{u}]} Q(t)>u \right )$\end{document} and ℙinft∈[0,Tu]Q(t)>u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {P}\left (\inf _{t\in [0,T_{u}]} Q(t)>u \right )$\end{document}, as u→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u\rightarrow \infty $\end{document}. As a by-product we find conditions under which strong Piterbarg property holds.
引用
收藏
页码:273 / 302
页数:29
相关论文
共 16 条
  • [1] Albin JMP(2004)On overload in a storage model, with a self-similar and infinitely divisible input Ann. Appl. Probab. 14 820-844
  • [2] Samorodnitsky G(2014)On the infimum attained by the reflected fractional Brownian motion Extremes 17 431-446
  • [3] Dȩbicki K(2002)Ruin probability for Gaussian integrated processes Stochastic Process. Appl. 98 151-174
  • [4] Kosiński KM(2005)Extremes of Gaussian processes over an infinite horizon Stochastic Process. Appl. 115 207-248
  • [5] Dȩbicki K(2013)On the supremum of γ-reflected processes with fractional Brownian motion as input Stochastic Process. Appl. 123 4111-4127
  • [6] Dieker AB(1999)Extremes of a certain class of Gaussian processes Stochastic Process. Appl. 83 257-271
  • [7] Hashorva E(2004)Limit theorem for maximum of the storage process with fractional Brownian motion as input Stochastic Process. Appl. 114 231-250
  • [8] Ji L(1994)A storage model with self-similar input Queueing Systems Theory Appl. 16 387-396
  • [9] Piterbarg VI(2001)Large deviations of a storage process with fractional Brownian motion as input Extremes 4 147-164
  • [10] Hüsler J(1958)On the integrodifferential equation of Takács I. Ann. Math. Statist. 29 563-570