On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems

被引:0
|
作者
Robert Carr
Santosh Vempala
机构
[1] Sandia National Labs,
[2] Department of Mathematics,undefined
来源
Mathematical Programming | 2004年 / 100卷
关键词
Objective Function; Combinatorial Optimization; Main Tool; Travel Salesman Problem; Linear Programming Relaxation;
D O I
暂无
中图分类号
学科分类号
摘要
A long-standing conjecture in combinatorial optimization says that the integrality gap of the famous Held-Karp relaxation of the metric STSP (Symmetric Traveling Salesman Problem) is precisely 4/3. In this paper, we show that a slight strengthening of this conjecture implies a tight 4/3 integrality gap for a linear programming relaxation of the metric ATSP (Asymmetric Traveling Salesman Problem). Our main tools are a new characterization of the integrality gap for linear objective functions over polyhedra, and the isolation of ‘‘hard-to-round’’ solutions of the relaxations.
引用
收藏
页码:569 / 587
页数:18
相关论文
共 50 条
  • [41] The symmetric quadratic traveling salesman problem
    Fischer, Anja
    Helmberg, Christoph
    MATHEMATICAL PROGRAMMING, 2013, 142 (1-2) : 205 - 254
  • [42] THE SYMMETRIC CLUSTERED TRAVELING SALESMAN PROBLEM
    JONGENS, K
    VOLGENANT, T
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 19 (01) : 68 - 75
  • [43] On Labeled Traveling Salesman Problems
    Couetoux, Basile
    Gourves, Laurent
    Monnot, Jerome
    Telelis, Orestis A.
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 776 - +
  • [44] A bidirectional graph neural network for traveling salesman problems on arbitrary symmetric graphs
    Hu, Yujiao
    Zhang, Zhen
    Yao, Yuan
    Huyan, Xingpeng
    Zhou, Xingshe
    Lee, Wee Sun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 97
  • [45] SYMMETRICAL TRAVELING SALESMAN PROBLEMS
    VOLGENANT, A
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1990, 49 (01) : 153 - 154
  • [46] On inverse traveling salesman problems
    Yerim Chung
    Marc Demange
    4OR, 2012, 10 : 193 - 209
  • [47] Traveling salesman problems with profits
    Feillet, D
    Dejax, P
    Gendreau, M
    TRANSPORTATION SCIENCE, 2005, 39 (02) : 188 - 205
  • [48] Traveling salesman path problems
    Lam, Fumei
    Newman, Alantha
    MATHEMATICAL PROGRAMMING, 2008, 113 (01) : 39 - 59
  • [49] A DUAL ASCENT ALGORITHM FOR THE 1-TREE RELAXATION OF THE SYMMETRIC TRAVELING SALESMAN PROBLEM
    MALIK, K
    FISHER, ML
    OPERATIONS RESEARCH LETTERS, 1990, 9 (01) : 1 - 7
  • [50] HEURISTIC FOR ASYMMETRIC TRAVELING SALESMAN PROBLEM
    VANDERCRYUSSEN, P
    RIJCKAERT, MJ
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1978, 29 (07) : 697 - 701