Objective Function;
Combinatorial Optimization;
Main Tool;
Travel Salesman Problem;
Linear Programming Relaxation;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A long-standing conjecture in combinatorial optimization says that the integrality gap of the famous Held-Karp relaxation of the metric STSP (Symmetric Traveling Salesman Problem) is precisely 4/3. In this paper, we show that a slight strengthening of this conjecture implies a tight 4/3 integrality gap for a linear programming relaxation of the metric ATSP (Asymmetric Traveling Salesman Problem). Our main tools are a new characterization of the integrality gap for linear objective functions over polyhedra, and the isolation of ‘‘hard-to-round’’ solutions of the relaxations.