Oxygen and nitrogen co-doped mesoporous carbon derived from COFs for efficient degradation of levofloxacin via peroxymonosulfate activation

被引:0
|
作者
Xinxi Zhang
Min Cao
Da Liu
Juying Lei
Jinlong Zhang
Yongdi Liu
Liang Zhou
机构
[1] East China University of Science and Technology,National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery
[2] East China University of Science and Technology,State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
[3] Shanghai Institute of Pollution Control and Ecological Security,Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School
[4] Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization,undefined
[5] East China University of Science and Technology,undefined
[6] East China University of Science and Technology,undefined
来源
关键词
Covalent organic frameworks; Peroxymonosulfate activation; Reactive oxygen species; Metal-free carbon materials;
D O I
暂无
中图分类号
学科分类号
摘要
Advanced oxidation processes based on peroxymonosulfate (PMS) activation are widely used for the removal of antibiotic contaminants. However, the commonly used transition metal catalysts suffer from secondary contamination due to ions leaching during the activation of PMS. Herein, the oxygen and nitrogen co-doped carbon material (Nv-NC-2) with abundant mesopores was obtained by simple high-temperature calcination using covalent organic frameworks (COFs) as precursors and NH4Cl as an activator. The Nv-NC-2/PMS system exhibited excellent levofloxacin removal efficiency under a wide pH and complex water environment with anions interference. The C=O in Nv-NC-2 was identified as the main active sites through degradation experiments and XPS. Furthermore, the electron paramagnetic resonance, quenching experiments and probe capture experiments demonstrated 1O2 and O2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{O}}_{2}^{ - }$$\end{document} were dominant active species. This study enhances the catalytic activity of COFs-derived carbon materials through a simple activation technique, which provides a novel method for surface modification of carbon materials.
引用
收藏
页码:2793 / 2806
页数:13
相关论文
共 50 条
  • [31] Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation
    Wu F.
    Liu Z.
    Xie W.
    You Y.
    Lai R.
    Chen Y.
    Lin G.
    Lu B.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (06): : 3292 - 3301
  • [32] Preparation of Cobalt-Nitrogen Co-Doped Carbon Nanotubes for Activated Peroxymonosulfate Degradation of Carbamazepine
    Chu, Bei
    Tan, Yixin
    Lou, Yichen
    Lin, Jiawei
    Liu, Yiman
    Feng, Jiaying
    Chen, Hui
    MOLECULES, 2024, 29 (07):
  • [33] Efficient degradation of tetracycline by singlet oxygen-dominated peroxymonosulfate activation with magnetic nitrogen-doped porous carbon
    Shaohua Wu
    Chunping Yang
    Yan Lin
    Jay J.Cheng
    Journal of Environmental Sciences, 2022, (05) : 330 - 340
  • [34] Peroxymonosulfate activation by graphitic carbon nitride co-doped with manganese, cobalt, and oxygen for degradation of trichloroethylene: Effect of oxygen precursors, kinetics, and mechanism
    Wang, Yu
    Fang, Lianhu
    Wang, Zhen
    Yang, Qi
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 278
  • [35] Bio-synthesis of Co-doped FeMnOx and its efficient activation of peroxymonosulfate for the degradation of moxifloxacin
    Xu, Anlin
    Wu, Donghong
    Zhang, Ren
    Fan, Siyan
    Lebedev, Albert T.
    Zhang, Yongjun
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [36] Efficient degradation of tetracycline by singlet oxygen-dominated peroxymonosulfate activation with magnetic nitrogen-doped porous carbon
    Wu, Shaohua
    Yang, Chunping
    Lin, Yan
    Cheng, Jay J.
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2022, 115 : 330 - 340
  • [37] Rational design to manganese and oxygen co-doped polymeric carbon nitride for efficient nonradical activation of peroxymonosulfate and the mechanism insight
    He, Chao
    Xia, Wu
    Zhou, Chengyun
    Huang, Danlian
    Zhang, Chen
    Song, Biao
    Yang, Yang
    Li, Jun
    Xu, Xing
    Shang, Yanan
    Du, Li
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [38] Efficient degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe-N co-doped carbon materials: Singlet oxygen and electron-transfer mechanisms
    Tang, Tian
    Li, Yuqiong
    Di, Xixi
    Shi, Yixuan
    Liu, Dong
    Wang, Wei
    Liu, Zhifeng
    Ji, Xiaohui
    Yu, Xiaohu
    Shao, Xianzhao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [39] Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction
    Liu, Yingying
    Ruan, Jianming
    Sang, Shangbin
    Zhou, Zhongcheng
    Wu, Qiumei
    ELECTROCHIMICA ACTA, 2016, 215 : 388 - 397
  • [40] Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N co-doped biochar: Emphasizing the important role of biochar graphitization
    Zhu, Hui
    Guo, An
    Wang, Siming
    Long, Yan
    Fan, Guangyin
    Yu, Xiaojun
    CHEMICAL ENGINEERING JOURNAL, 2022, 450