Oxygen and nitrogen co-doped mesoporous carbon derived from COFs for efficient degradation of levofloxacin via peroxymonosulfate activation

被引:0
|
作者
Xinxi Zhang
Min Cao
Da Liu
Juying Lei
Jinlong Zhang
Yongdi Liu
Liang Zhou
机构
[1] East China University of Science and Technology,National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery
[2] East China University of Science and Technology,State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
[3] Shanghai Institute of Pollution Control and Ecological Security,Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School
[4] Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization,undefined
[5] East China University of Science and Technology,undefined
[6] East China University of Science and Technology,undefined
来源
Research on Chemical Intermediates | 2023年 / 49卷
关键词
Covalent organic frameworks; Peroxymonosulfate activation; Reactive oxygen species; Metal-free carbon materials;
D O I
暂无
中图分类号
学科分类号
摘要
Advanced oxidation processes based on peroxymonosulfate (PMS) activation are widely used for the removal of antibiotic contaminants. However, the commonly used transition metal catalysts suffer from secondary contamination due to ions leaching during the activation of PMS. Herein, the oxygen and nitrogen co-doped carbon material (Nv-NC-2) with abundant mesopores was obtained by simple high-temperature calcination using covalent organic frameworks (COFs) as precursors and NH4Cl as an activator. The Nv-NC-2/PMS system exhibited excellent levofloxacin removal efficiency under a wide pH and complex water environment with anions interference. The C=O in Nv-NC-2 was identified as the main active sites through degradation experiments and XPS. Furthermore, the electron paramagnetic resonance, quenching experiments and probe capture experiments demonstrated 1O2 and O2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{O}}_{2}^{ - }$$\end{document} were dominant active species. This study enhances the catalytic activity of COFs-derived carbon materials through a simple activation technique, which provides a novel method for surface modification of carbon materials.
引用
收藏
页码:2793 / 2806
页数:13
相关论文
共 50 条
  • [1] Oxygen and nitrogen co-doped mesoporous carbon derived from COFs for efficient degradation of levofloxacin via peroxymonosulfate activation
    Zhang, Xinxi
    Cao, Min
    Liu, Da
    Lei, Juying
    Zhang, Jinlong
    Liu, Yongdi
    Zhou, Liang
    RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (07) : 2793 - 2806
  • [2] Co/N co-doped porous carbon as a catalyst for the degradation of RhB by efficient activation of peroxymonosulfate
    Hongxia Yu
    Dan Ding
    Shuailing Zhao
    Muhammad Faheem
    Weijie Mao
    Li Yang
    Liwei Chen
    Tianming Cai
    Environmental Science and Pollution Research, 2023, 30 : 10969 - 10981
  • [3] Co/N co-doped porous carbon as a catalyst for the degradation of RhB by efficient activation of peroxymonosulfate
    Yu, Hongxia
    Ding, Dan
    Zhao, Shuailing
    Faheem, Muhammad
    Mao, Weijie
    Yang, Li
    Chen, Liwei
    Cai, Tianming
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (04) : 10969 - 10981
  • [4] Peroxymonosulfate activation by graphitic carbon nitride co-doped with manganese, cobalt, and oxygen for degradation of trichloroethylene: Effect of oxygen precursors, kinetics, and mechanism
    Wang, Yu
    Fang, Lianhu
    Wang, Zhen
    Yang, Qi
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 278
  • [5] Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N co-doped biochar: Emphasizing the important role of biochar graphitization
    Zhu, Hui
    Guo, An
    Wang, Siming
    Long, Yan
    Fan, Guangyin
    Yu, Xiaojun
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [6] Iron/nitrogen co-doped biochar derived from salvaged cyanobacterial for efficient peroxymonosulfate activation and ofloxacin degradation: Synergistic effect of Fe/N in non-radical path
    Yang, Yuxuan
    Chi, Yanxiao
    Yang, Kunlun
    Zhang, Zengshuai
    Gu, Peng
    Ren, Xueli
    Wang, Xiaorui
    Miao, Hengfeng
    Xu, Xinhua
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 350 - 361
  • [7] Enhanced sulfamethoxazole degradation using an efficient Co-doped MnO2 activator for peroxymonosulfate activation
    Wang, Chao
    Xu, Su
    Liao, WenChao
    Wang, TsingHai
    DESALINATION AND WATER TREATMENT, 2024, 317
  • [8] Highly efficient activation of peroxymonosulfate by Co, S co-doped bamboo biochar for sulfamethoxazole degradation: Insights into the role of S
    Huang, Xiaoyi
    Yu, Zhendong
    Shi, Yanbiao
    Liu, Qingsong
    Fang, Shengqiong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (05):
  • [9] Activation of peroxymonosulfate by nitrogen-doped porous carbon for efficient degradation of organic pollutants in water: Performance and mechanism
    Hu, Yi
    Chen, Dezhi
    Wang, Shoujun
    Zhang, Rui
    Wang, Yichuan
    Liu, Meng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 280
  • [10] Degradation of Sulfamethoxazole by Activation of Persulfate Based on Nitrogen-Doped Mesoporous Carbon
    Zhang, Kaibin
    Liu, Xiaocong
    Wang, Yi
    Yang, Guo
    Zhu, Ying
    Jiang, Caiyi
    Pan, Zhicheng
    Liu, Xiaonan
    Xing, Bo
    WATER AIR AND SOIL POLLUTION, 2024, 235 (03)