On the Number of Limit Cycles Bifurcating from a Quartic Reversible Center

被引:0
|
作者
Bo Huang
Linping Peng
Yong Cui
机构
[1] Beihang University,LMIB, School of Mathematical Science
[2] Beihang University,School of Automation Science and Electrical Engineering
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Quartic reversible center; period annulus; bifurcation of limit cycles; polynomial perturbation; averaging method; 37G15; 34C07; 34C05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the bifurcation of limit cycles from a quartic reversible and non-Hamiltonian system. By using the averaging theory and some mathematical technique on estimating the zeros of the function, we show that under small polynomial perturbation of degree 3n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3n+1$$\end{document}, at most 3n-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3n-3$$\end{document} limit cycles bifurcate from the period annulus of the unperturbed system for n>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>3$$\end{document}, while at most 2n limit cycles appear from the period annulus of the unperturbed system for n=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1, 2, 3$$\end{document}. And the upper bound for the latter case is sharp.
引用
收藏
相关论文
共 50 条