Generalization bounds for non-stationary mixing processes

被引:0
|
作者
Vitaly Kuznetsov
Mehryar Mohri
机构
[1] Google Research,
[2] Courant Institute and Google Research,undefined
来源
Machine Learning | 2017年 / 106卷
关键词
Generalization bounds; Time series; Mixing; Non-stationary processes; Markov processes; Asymptotic stationarity; Fast rates; Local Rademacher complexity; Unbounded loss;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents the first generalization bounds for time series prediction with a non-stationary mixing stochastic process. We prove Rademacher complexity learning bounds for both average-path generalization with non-stationary β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-mixing processes and path-dependent generalization with non-stationary ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-mixing processes. Our guarantees are expressed in terms of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}- or ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-mixing coefficients and a natural measure of discrepancy between training and target distributions. They admit as special cases previous Rademacher complexity bounds for non-i.i.d. stationary distributions, for independent but not identically distributed random variables, or for the i.i.d. case. We show that, using a new sub-sample selection technique we introduce, our bounds can be tightened under the natural assumption of asymptotically stationary stochastic processes. We also prove that fast learning rates can be achieved by extending existing local Rademacher complexity analyses to the non-i.i.d. setting. We conclude the paper by providing generalization bounds for learning with unbounded losses and non-i.i.d. data.
引用
收藏
页码:93 / 117
页数:24
相关论文
共 50 条
  • [1] Generalization bounds for non-stationary mixing processes
    Kuznetsov, Vitaly
    Mohri, Mehryar
    MACHINE LEARNING, 2017, 106 (01) : 93 - 117
  • [2] Generalization Bounds for Time Series Prediction with Non-stationary Processes
    Kuznetsov, Vitaly
    Mohri, Mehryar
    ALGORITHMIC LEARNING THEORY (ALT 2014), 2014, 8776 : 260 - 274
  • [3] Bounds for the expected supremum of some non-stationary Gaussian processes
    Jafari, Hossein
    Zhao, Yiqiang Q.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2022, 94 (07) : 1031 - 1053
  • [4] Observer Design for non-stationary oscillating Disturbances in Mixing Processes
    Skalecki, Patric
    Laicher, Sonja
    Woerner, Mark
    Sawodny, Oliver
    IFAC PAPERSONLINE, 2020, 53 (02): : 8891 - 8896
  • [5] Stability bounds for stationary φ-mixing and β-mixing processes
    Mohri, Mehryar
    Rostamizadeh, Afshin
    Journal of Machine Learning Research, 2010, 11 : 789 - 814
  • [6] BERNSTEIN INEQUALITY FOR STRONG MIXING, NON-STATIONARY PROCESSES - APPLICATIONS
    CARBON, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (05): : 303 - 306
  • [7] Stability Bounds for Stationary φ-mixing and β-mixing Processes
    Mohri, Mehryar
    Rostamizadeh, Afshin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 789 - 814
  • [8] STATIONARY OPERATOR FOR NON-STATIONARY PROCESSES
    ZUBAREV, DN
    DOKLADY AKADEMII NAUK SSSR, 1965, 164 (03): : 537 - &
  • [9] Mixing properties of non-stationary INGARCH(1,1) processes
    Doukhan, Paul
    Leucht, Anne
    Neumann, Michael H.
    BERNOULLI, 2022, 28 (01) : 663 - 688
  • [10] Mixing properties of non-stationary multi-variate count processes
    Debaly, Zinsou Max
    Neumann, Michael H.
    Truquet, Lionel
    JOURNAL OF TIME SERIES ANALYSIS, 2024,