Existence of Nonoscillatory Solutions for Fractional Functional Differential Equations

被引:0
作者
Yong Zhou
Bashir Ahmad
Ahmed Alsaedi
机构
[1] Xiangtan University,Faculty of Mathematics and Computational Science
[2] King Abdulaziz University,Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2019年 / 42卷
关键词
Fractional differential equations; Liouville derivative; Nonoscillatory solutions; Existence; 26A33; 34K15; 35K99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop sufficient criteria for the existence of a nonoscillatory solution to the fractional neutral functional differential equation of the form: Dtα[x(t)+cx(t-τ)]′+∑i=1mPi(t)Fi(x(t-σi))=0,t≥t0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D^{\alpha }_t[x(t)+c x(t-\tau )]'+\sum ^m_{i=1}P_i(t)F_i(x(t-\sigma _i))=0,\quad t\ge t_0, \end{aligned}$$\end{document}where Dtα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_t^{\alpha }$$\end{document} is Liouville fractional derivatives of order α≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 0$$\end{document} on the half-axis, c∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in \mathbb {R}$$\end{document}, τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, σi∈R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _i\in \mathbb {R}^+$$\end{document}, Pi∈C([t0,∞),R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_i\in C([t_0, \infty ), \mathbb {R})$$\end{document}, Fi∈C(R,R),i=1,2,…,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_i\in C(\mathbb {R}, \mathbb {R}), ~ i=1,2,\ldots ,m$$\end{document}, m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 1$$\end{document} is an integer. Our results are new and improve many known results on the integer-order functional differential equations.
引用
收藏
页码:751 / 766
页数:15
相关论文
共 24 条
[1]  
Zhou Y(2017)On the time-fractional Navier–Stokes equations Comput. Math. Appl. 73 874-891
[2]  
Peng L(2017)Weak solutions of the time-fractional Navier–Stokes equations and optimal control Comput. Math. Appl. 73 1016-1027
[3]  
Zhou Y(2015)Controllability for fractional evolution inclusions without compactness Evolut. Equ. Control Theory 4 507-524
[4]  
Peng L(2017)Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems Comput. Math. Appl. 73 1325-1345
[5]  
Zhou Y(2017)Existence of nonoscillatory solutions for fractional neutral differential equations Appl. Math. Lett. 72 70-74
[6]  
Vijayakumar V(2012)On the oscillation of fractional differential equations Fract. Calc. Appl. Anal. 15 222-231
[7]  
Murugesu R(2014)On the oscillation of fractional-order delay differential equations with constant coefficients Commun. Nonlinear Sci. Numer. Simul. 19 3988-3993
[8]  
Zhou Y(2014)The zeros of the solutions of the fractional oscillation equation Fract. Calc. Appl. Anal. 17 10-22
[9]  
Zhang L(2015)Forced oscillation of solutions of a nonlinear fractional partial differential equation Appl. Math. Comput. 254 14-19
[10]  
Zhou Y(1998)Existence of nonoscillatory solution of second order linear neutral delay equation J. Math. Anal. Appl. 228 436-448