Weighted stability number of graphs and weighted satisfiability: The two facets of pseudo-Boolean optimization

被引:0
作者
D. de Werra
P. L. Hammer
机构
[1] IMA - EPFL,
[2] RUTCOR,undefined
[3] Rutgers University,undefined
来源
Annals of Operations Research | 2007年 / 149卷
关键词
Graph Transformation; Complete Bipartite Graph; Stability Number; Discrete Apply Mathematic; Complete Bipartite Subgraph;
D O I
暂无
中图分类号
学科分类号
摘要
We exhibit links between pseudo-Boolean optimization, graph theory and logic. We show the equivalence of maximizing a pseudo-Boolean function and finding a maximum weight stable set; symmetrically minimizing a pseudo-Boolean function is shown to be equivalent to solving a weighted satisfiability problem.
引用
收藏
页码:67 / 73
页数:6
相关论文
共 14 条
[1]  
Alexe A.(2004)Struction Revisited Discrete Applied Mathematics 132 27-46
[2]  
Hammer P.L.(1984)Pseudoboolean Functions and Stability of Graphs Annals of Discrete Mathematics 19 83-98
[3]  
Lozin V.V.(1995)Polynomially Solvable Cases for the Maximum Stable Set Problem Discrete Applied Mathematics 60 195-210
[4]  
Werra D. de(1985)On the Use of Boolean Methods for the Computation of the Stability Number Discrete Applied Mathematics 76 183-203
[5]  
Ebenegger C.(1985)Stability in CAN-Free Graphs J. Combin. Theory B38 23-30
[6]  
Hammer P.L.(1985)The Struction of a Graph: Applications to CN-Free Graphs Combinatorica 5 141-147
[7]  
Werra D. de(undefined)undefined undefined undefined undefined-undefined
[8]  
Hertz A.(undefined)undefined undefined undefined undefined-undefined
[9]  
Hertz A.(undefined)undefined undefined undefined undefined-undefined
[10]  
Hammer P.L.(undefined)undefined undefined undefined undefined-undefined