Filter pruning via expectation-maximization

被引:0
作者
Sheng Xu
Yanjing Li
Linlin Yang
Baochang Zhang
Dianmin Sun
Kexin Liu
机构
[1] Beihang University,School of Automatic Science and Electrical Engineering
[2] Beihang University,School of Electronics and Information Engineering
[3] University of Bonn,Institute of Computer Science II
[4] Nanchang Institute of Technology,Department of Thoracic Surgery, Shandong Cancer Hospital and Institute
[5] Shandong First Medical University and Shandong Academy of Medical Sciences,State Key Laboratory of Software Development Environment Beijing Advanced Innovation Center for Big Data and Brain Computing
[6] Beihang University,undefined
来源
Neural Computing and Applications | 2022年 / 34卷
关键词
Expectation maximization; CNN compression; CNN pruning;
D O I
暂无
中图分类号
学科分类号
摘要
The redundancy in convolutional neural networks (CNNs) causes a significant number of extra parameters resulting in increased computation and less diverse filters. In this paper, we introduce filter pruning via expectation-maximization (FPEM) to trim redundant structures and improve the diversity of remaining structures. Our method is designed based on the discovery that the filter diversity of pruned networks is positively correlated with its performance. The expectation step divides filters into groups by maximum likelihood layer-wisely, and averages the output feature maps for each cluster. The maximization step calculates the likelihood estimation of clusters and formulates a loss function to make the distributions in the same cluster consistent. After training, the intra-cluster redundant filters can be trimmed and only intra-cluster diverse filters are retained. Experiments conducted on CIFAR-10 have outperformed the corresponding full models. On ImageNet ILSVRC12, FPEM reduces 46.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$46.5\%$$\end{document} FLOPs on ResNet-50 with only 0.36%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.36\%$$\end{document} Top-1 accuracy decrease, which advances the state-of-arts. In particular, the FPEM offers strong generalization performance on the object detection task.
引用
收藏
页码:12807 / 12818
页数:11
相关论文
共 28 条
[1]  
Everingham M(2010)The pascal visual object classes (voc) challenge Int J Comput Vis 88 303-338
[2]  
Van Gool L(2019)Toward compact convnets via structure-sparsity regularized filter pruning IEEE Trans Neural Netw Learn Syst 31 574-588
[3]  
Williams CK(2015)Imagenet large scale visual recognition challenge Int J Comput Vis 115 211-252
[4]  
Winn J(2020)Localization-aware channel pruning for object detection Neurocomputing 403 400-408
[5]  
Zisserman A(undefined)undefined undefined undefined undefined-undefined
[6]  
Lin S(undefined)undefined undefined undefined undefined-undefined
[7]  
Ji R(undefined)undefined undefined undefined undefined-undefined
[8]  
Li Y(undefined)undefined undefined undefined undefined-undefined
[9]  
Deng C(undefined)undefined undefined undefined undefined-undefined
[10]  
Li X(undefined)undefined undefined undefined undefined-undefined