On the electrical conductivity of PVDF composites with different carbon-based nanoadditives

被引:0
|
作者
Tiberio A. Ezquerra
José C. Canalda
Alejandro Sanz
Amelia Linares
机构
[1] Instituto de Estructura de la Materia (IEM-CSIC),
来源
关键词
PVDF; Carbon nanoadditives; Percolation; Electrical conductivity; Dielectric constant;
D O I
暂无
中图分类号
学科分类号
摘要
Composites based on poly(vinylidene fluoride) (PVDF) and different carbon additives, such as carbon nanofibers (CNF), graphite (G), expanded graphite (EG), and single-walled carbon nanotubes (SWCNT) have been prepared by nonsolvent precipitation, from solution, and subsequent melt processing. From a structural point of view, the α-crystal phase is the predominant crystal form in all the nanocomposites. However, those containing CNF, G, and EG at high nanoadditive content present also β-crystal phase. Even though the intrinsic thermal properties of PVDF are hardly affected, the nanoadditives act as nucleating agents for the crystallization. In regard to the electrical properties, all nanocomposites exhibit a percolating behavior. Moreover, the fact that the nanocomposites present both high dc conductivity and high dielectric constant, in a certain nanoadditive concentration range below the percolation threshold, suggests that a tunneling conduction mechanism for charge transport is present. With regard to the ac electrical properties, depending on the morphology of the different additives, the charge transport above percolation threshold can be explained taking into account the anomalous diffusion effect for high nanoadditive content or an intercluster polarization mechanism when the nanoadditive concentration decreases.
引用
收藏
页码:1989 / 1998
页数:9
相关论文
共 50 条
  • [1] On the electrical conductivity of PVDF composites with different carbon-based nanoadditives
    Ezquerra, Tiberio A.
    Canalda, Jose C.
    Sanz, Alejandro
    Linares, Amelia
    COLLOID AND POLYMER SCIENCE, 2014, 292 (08) : 1989 - 1998
  • [2] Thermal conductivity and electrical resistance of carbon-based cementitious composites
    Acikok, Fatih
    Genc, Ahmet
    Sahin, Oguzhan
    Bayer, Ismail Raci
    Ardoga, Mehmet Kemal
    Sahmaran, Mustafa
    MAGAZINE OF CONCRETE RESEARCH, 2023, 76 (04) : 176 - 187
  • [3] Hardness and thermal conductivity of Cu-carbon composites by using different carbon-based fillers
    Li, Chuan
    Malik, Abdul
    Nazeer, Faisal
    Abrar, Sehreish
    Long, Jianyu
    Yang, Zhe
    Ma, Zhuang
    Gao, Lihong
    RESULTS IN PHYSICS, 2022, 33
  • [4] Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials
    Al-Dahawi, Ali
    Ozturk, Oguzhan
    Emami, Farhad
    Yildirim, Gurkan
    Sahmaran, Mustafa
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 104 : 160 - 168
  • [5] Carbon-based piezoresistive polymer composites: Structure and electrical properties
    Cravanzola, Sara
    Haznedar, Galip
    Scarano, Domenica
    Zecchina, Adriano
    Cesano, Federico
    CARBON, 2013, 62 : 270 - 277
  • [6] Thermal Conductivity and Electrical Resistivity of Melt-Mixed Polypropylene Composites Containing Mixtures of Carbon-Based Fillers
    Krause, Beate
    Rzeczkowski, Piotr
    Poetschke, Petra
    POLYMERS, 2019, 11 (06)
  • [7] PROTECTION OF CARBON-BASED COMPOSITES
    BACOS, MP
    JOURNAL DE PHYSIQUE IV, 1993, 3 (C9): : 819 - 829
  • [8] The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models
    Sohi, N. J. S.
    Bhadra, Sambhu
    Khastgir, D.
    CARBON, 2011, 49 (04) : 1349 - 1361
  • [9] Effect of Filler Morphology on the Electrical and Thermal Conductivity of PP/Carbon-Based Nanocomposites
    Zaccone, Marta
    Frache, Alberto
    Torre, Luigi
    Armentano, Ilaria
    Monti, Marco
    JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (08):
  • [10] THERMAL CONDUCTIVITY OF CARBON-BASED MATERIALS
    Kutuzov, S. V.
    Vasil'chenko, G. N.
    Chirka, T. V.
    Panov, E. N.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2013, 54 (01) : 39 - 43