Fuzzy equational logic

被引:0
作者
Bělohlávek R. [1 ]
机构
[1] Inst. for Res./Appl. Fuzzy Modeling, University of Ostrava, 701 03 Ostrava
关键词
Equational logic; Fuzzy equality; Fuzzy logic;
D O I
10.1007/s001530200006
中图分类号
学科分类号
摘要
Presented is a completeness theorem for fuzzy equational logic with truth values in a complete residuated lattice: Given a fuzzy set ∑ of identities and an identity p ≈ q, the degree to which p ≈ q syntactically follows (is provable) from ∑ equals the degree to which p ≈ q semantically follows from ∑. Pavelka style generalization of well-known Birkhoff's theorem is therefore established.
引用
收藏
页码:83 / 90
页数:7
相关论文
共 10 条
[1]  
Belohlavek R., Fuzzy Relational Systems: Mathematical Foundations
[2]  
Birkhoff G., On the structure of abstract algebras, Proc. Camb. Philos. Soc., 31, pp. 433-454, (1935)
[3]  
Goguen J.A., L-fuzzy sets, J. Math. Anal. Appl., 18, pp. 145-174, (1967)
[4]  
Goguen J.A., The logic of inexact concepts, Synthese, 18, pp. 325-373, (1968)
[5]  
Hajek P., Metamathematics of Fuzzy Logic, (1998)
[6]  
Hajek P., Function symbols in fuzzy predicate logic, East-West Fuzzy Logic Days, (2000)
[7]  
Hohle U., On the fundamentals of fuzzy set theory, J. Math. Anal. Appl., 201, pp. 786-826, (1996)
[8]  
Novak V., On the syntactico-semantical completeness of first-order fuzzy logic I, II, Kybernetika, 26, pp. 47-66, (1990)
[9]  
Novak V., Perfilieva I., Mockor J., Mathematical Principles of Fuzzy Logic, (1999)
[10]  
Pavelka J., On fuzzy logic I, II, III, Zeit. Math. Log. Grungl. Math., 25, pp. 45-52, (1979)