Maximal L1-Regularity of Generators for Bounded Analytic Semigroups in Banach Spaces

被引:0
作者
Myong-Hwan Ri
Reinhard Farwig
机构
[1] State Academy of Sciences,Institute of Mathematics
[2] Darmstadt University of Technology,Department of Mathematics
来源
Acta Mathematica Scientia | 2022年 / 42卷
关键词
Maximal ; -regularity; sectorial operator; Stokes operator; 35K90; 46B70; 47D06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that the generator of any bounded analytic semigroup in (θ, 1)-type real interpolation of its domain and underlying Banach space has maximal L1-regularity, using a duality argument combined with the result of maximal continuous regularity. As an application, we consider maximal L1-regularity of the Dirichlet-Laplacian and the Stokes operator in inhomogeneous Bq,1s-type Besov spaces on domains of ℝn, n ≥ 2.
引用
收藏
页码:1261 / 1272
页数:11
相关论文
共 39 条
  • [1] Amann H(1988)Parabolic evolution equations in interpolation and extrapolation spaces J Funct Anal 78 233-270
  • [2] Amann H(2000)On the strong solvability of the Navier-Stokes equations J Math Fluid Mech 2 16-98
  • [3] Amann H(2003)Navier-Stokes equations with nonhomogeneous Dirichlet data J Nonlinear Math Phys 10 1-11
  • [4] Angenent S(1990)Nonlinear analytic semiflows Proc Roy Soc Edinburgh Sect A 115 91-107
  • [5] Cannarsa P(1986)On maximal Boll Unione Mat Ital B 5 165-175
  • [6] Vespri V(2001) regularity for the abstract Cauchy problem J Evol Equ 1 39-67
  • [7] Clément P(1996)Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations J Aust Math Soc 60A 51-89
  • [8] Simonett G(1979)Banach space operators with a bounded Ann Mat Pura Appl 120 329-396
  • [9] Cowling M(2009) functional calculus J Funct Anal 256 881-927
  • [10] Doust I(2000)Equations d’évolution abstraites non linéaires de type parabolique Adv Differential Equations 5 293-322