Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz–Sobolev spaces

被引:0
作者
Pablo Ochoa
Analía Silva
Maria José Suarez Marziani
机构
[1] Universidad Nacional de Cuyo,Departamento de Matemática, FCFMyN
[2] CONICET,Instituto de Matemática Aplicada San luis (IMASL)
[3] Universidad J. A. Maza,undefined
[4] Universidad Nacional de San Luis and Instituto de Matemática Aplicada San Luis (IMASL),undefined
[5] CONICET-UNSL,undefined
[6] Universidad Nacional de San Luis,undefined
[7] CONICET,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2024年 / 203卷
关键词
Fractional Orlicz–Sobolev spaces; Existence of weak solutions; Critical point theory; 35J62; 46E30; 35D30; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first prove the existence of solutions to Dirichlet problems involving the fractional g-Laplacian operator and lower order terms by appealing to sub- and supersolution methods. Moreover, we also state the existence of extremal solutions. Afterward, and under additional assumptions on the lower order structure, we establish by variational techniques the existence of multiple solutions: one positive, one negative and one with non-constant sign.
引用
收藏
页码:21 / 47
页数:26
相关论文
共 38 条
  • [1] Alberico A(2021)Fractional Orlicz-Sobolev embeddings J. de Mathématiques Pures et Appliquées 149 216-253
  • [2] Cianchi A(2020)On a class of nonvariational problems in fractional Orlicz-Sobolev spaces Nonlinear Anal. 190 2917-2944
  • [3] Pick L(2020)Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems Discrete Contin. Dyn. Syst. 40 681-695
  • [4] Slavíková L(2020)Basic results of fractional Orlicz-Sobolev space and applications to non-local problems Topol. Methods Nonlinear Anal. 55 841-851
  • [5] Bahrouni A(2019)Three solutions for a nonlocal problem with critical growth J. Math. Anal. Appl. 469 6283-6289
  • [6] Bahrouni S(2009)Multiple solutions for the p-Laplace operator with critical growth Nonlinear Anal. 7112 324-353
  • [7] Xiang M(1974)On the variational principle J. Math. Anal. Appl. 47 1047-1055
  • [8] Bahrouni S(2021)Extremal constant sign solutions and nodal solutions for the fractional p-Laplacian J. Math. Anal. Appl. 501 1-7
  • [9] Ounaies H(2004)Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities Abstr. Appl. Anal. 2004 333-367
  • [10] Bahrouni S(2006)Multiple solutions for the p-Laplace equation with nonlinear boundary conditions Electron. J. Differ. Equ. 2006 7-13