Ideal Connes amenability of l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{1}$$\end{document}-Munn algebras and its application to semigroup algebras

被引:0
作者
Ahmad Minapoor
机构
[1] Ayatollah Borujerdi University,Department of Mathematics
关键词
-Munn algebra; Rees matrix semigroup; Ideal Connes amenability;
D O I
10.1007/s00233-021-10175-0
中图分类号
学科分类号
摘要
We show that for any weakly cancellative uniformly locally finite inverse semigroup S such that l1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{1}(S)$$\end{document} is ideally Connes amenable, for each D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}-classes D of S, E(D) is finite, where E(D) is the set of idempotents of D. This is similar to a theorem of Duncan and Paterson, that says if l1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{1}(S)$$\end{document} is amenable then E(D) is finite. Also we study ideal Connes amenability of l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{1}$$\end{document}-Munn algebras.
引用
收藏
页码:756 / 764
页数:8
相关论文
共 36 条
  • [21] Minapoor A(1929)-Munn algebras and certain semigroup algebras Fund. Math. 13 73-undefined
  • [22] Minapoor A(undefined)Homomorphism of undefined undefined undefined-undefined
  • [23] Minapoor A(undefined)-Munn algebras and application to semigroup algebras undefined undefined undefined-undefined
  • [24] Bodaghi A(undefined)Zur allgemeinen Theorie des Masses undefined undefined undefined-undefined
  • [25] Ebrahimi Bagha D(undefined)undefined undefined undefined undefined-undefined
  • [26] Minapoor A(undefined)undefined undefined undefined undefined-undefined
  • [27] Bodaghi A(undefined)undefined undefined undefined undefined-undefined
  • [28] Ebrahimi Bagha D(undefined)undefined undefined undefined undefined-undefined
  • [29] Ramsden P(undefined)undefined undefined undefined undefined-undefined
  • [30] Runde V(undefined)undefined undefined undefined undefined-undefined