Ideal Connes amenability of l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{1}$$\end{document}-Munn algebras and its application to semigroup algebras

被引:0
作者
Ahmad Minapoor
机构
[1] Ayatollah Borujerdi University,Department of Mathematics
关键词
-Munn algebra; Rees matrix semigroup; Ideal Connes amenability;
D O I
10.1007/s00233-021-10175-0
中图分类号
学科分类号
摘要
We show that for any weakly cancellative uniformly locally finite inverse semigroup S such that l1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{1}(S)$$\end{document} is ideally Connes amenable, for each D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}-classes D of S, E(D) is finite, where E(D) is the set of idempotents of D. This is similar to a theorem of Duncan and Paterson, that says if l1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{1}(S)$$\end{document} is amenable then E(D) is finite. Also we study ideal Connes amenability of l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{1}$$\end{document}-Munn algebras.
引用
收藏
页码:756 / 764
页数:8
相关论文
共 36 条
  • [1] Civin P(1961)The second conjugate space of a Banach algebra as an algebra Pacific J. Math. 11 820-847
  • [2] Yood B(1979)The second dual of a Banach algebra Proc. R. Soc. Edinburgh. Sect. A 19 309-325
  • [3] Duncan J(1990)Amenability for discrete convolution semigroup algebras Math. Scand. 66 141-146
  • [4] Hosseiniun SAR(1949)Means on semigroups and groups Bull. Am. Math. Soc. 55 1054-1055
  • [5] Duncan J(1991)Banach algebra structure and amenability of a class of matrix algebras with applications J. Funct. Anal. 161 364-383
  • [6] Paterson ALT(2004)Ideals and representation of certain semigroup algebras Semigroup Forum 69 51-62
  • [7] Day MM(2004)Derivations into duals of ideals of Banach algebras Proc. Ind. Acad. Sci. (Math. Sci.) 114 399-408
  • [8] Esslamzadeh GH(2018)Permanently weak amenability of Rees semigroup algebras Int. J. Anal. 16 117-124
  • [9] Esslamzadeh GH(2011)Approximate amenability of matrix algebras Scientia. Ser. A Math. Sci. 21 17-24
  • [10] Eshaghi Gordji M(1972)Cohomology of operator algebras III Bull. Soc. Math. France 100 73-96