Extrapolation of Compactness on Banach Function Spaces

被引:2
作者
Lorist, Emiel [1 ]
Nieraeth, Zoe [2 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2600 GA Delft, Netherlands
[2] BCAM Basque Ctr Appl Math, Bilbao, Spain
关键词
Banach function space; Compact operator; Extrapolation; Muckenhoupt weight; WEIGHTED NORM INEQUALITIES; COMMUTATORS; LEBESGUE; OPERATOR;
D O I
10.1007/s00041-024-10087-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an extrapolation of compactness theorem for operators on Banach function spaces satisfying certain convexity and concavity conditions. In particular, we show that the boundedness of an operator T in the weighted Lebesgue scale and the compactness of T in the unweighted Lebesgue scale yields compactness of T on a very general class of Banach function spaces. As our main new tool, we prove various characterizations of the boundedness of the Hardy-Littlewood maximal operator on such spaces and their associate spaces, using a novel sparse self-improvement technique. We apply our main results to prove compactness of the commutators of singular integral operators and pointwise multiplication by functions of vanishing mean oscillation on, for example, weighted variable Lebesgue spaces.
引用
收藏
页数:25
相关论文
共 49 条
[31]   Sharp Reverse Holder property for A∞ weights on spaces of homogeneous type [J].
Hytonen, Tuomas ;
Perez, Carlos ;
Rela, Ezequiel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (12) :3883-3899
[32]   SYSTEMS OF DYADIC CUBES IN A DOUBLING METRIC SPACE [J].
Hytonen, Tuomas ;
Kairema, Anna .
COLLOQUIUM MATHEMATICUM, 2012, 126 (01) :1-33
[33]   AN ELEMENTARY PROOF OF THE A2 BOUND [J].
Lacey, Michael T. .
ISRAEL JOURNAL OF MATHEMATICS, 2017, 217 (01) :181-195
[34]   Extrapolation of compactness on weighted Morrey spaces [J].
Lappas, Stefanos .
STUDIA MATHEMATICA, 2022, 265 (02) :177-195
[35]  
Lerner AK., 2017, Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Bjorn Jawerth, P288
[36]  
Lerner AK, 2023, Arxiv, DOI arXiv:2302.02475
[37]   Some Remarks on the Pointwise Sparse Domination [J].
Lerner, Andrei K. ;
Ombrosi, Sheldy .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) :1011-1027
[38]   A BOUNDEDNESS CRITERION FOR GENERAL MAXIMAL OPERATORS [J].
Lerner, Andrei K. ;
Ombrosi, Sheldy .
PUBLICACIONS MATEMATIQUES, 2010, 54 (01) :53-71
[39]  
Lindenstrauss J., 1979, CLASSICAL BANACH SPA, DOI [10.1007/978-3-662-35347-9, DOI 10.1007/978-3-662-35347-9]
[40]   A note on extrapolation of compactness [J].
Liu, Shenyu ;
Wu, Huoxiong ;
Yang, Dongyong .
COLLECTANEA MATHEMATICA, 2023, 74 (02) :375-390