On the positive nonoscillatory solutions of the difference equation xn+1 = α + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {\tfrac{{x_{n - k} }} {{x_{n - m} }}} \right) $$\end{document}p

被引:0
作者
Khuong Van Vu
机构
[1] Univ. of Transport and Communications,Dept. of Math. Anal.
关键词
equilibrium; asymptotic; positive solution; difference equation; nonoscillatory solution; 39A10;
D O I
10.1007/s11766-009-1905-x
中图分类号
学科分类号
摘要
The aim of this paper is to show that the following difference equation: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_{n + 1} = \alpha + \left( {\tfrac{{x_{n - k} }} {{x_{n - m} }}} \right)^p ,n = 0,1,2,..., $$\end{document} where α > −1, p > 0, k,m ∈ N are fixed, 0 ≤ m < k, x−k, x−k+1, ..., x−m, ..., x−1, x0 are positive, has positive nonoscillatory solutions which converge to the positive equilibrium \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar x $$\end{document} = α + 1. It is interesting that the method described in the paper, in some cases can also be applied when the parameter α is variable.
引用
收藏
相关论文
共 15 条
[1]  
Berg L.(2002)On the asymptotics of nonlinear difference equations Z Anal Anwend 21 1061-1074
[2]  
Berg L.(2004)Inclusion theorems for nonlinear difference equations with applications J Diff Eqs Appl 10 399-408
[3]  
Berg L.(2005)Corrections to “Inclusion theorems for nonlinear difference equations with applications” J Diff Eqs Appl 11 181-182
[4]  
Devault R.(2003)On the recursive sequence J Diff Eqs Appl 9 721-730
[5]  
Kent C.(1996) = Math Vesnik 48 99-105
[6]  
Kosmala W.(2002) + Austral Math Soc Gaz 29 209-215
[7]  
Stevič S.(2002)/ Colloq Math 93 267-276
[8]  
Stevič S.(2003)Asymptotic behaviour of a sequence defined by iteration Indian J Pure Appl Math 34 1681-1689
[9]  
Stevič S.(2003)Asymptotic behaviour of a sequence defined by a recurrence formula Bull Calcuta Math Soc 95 39-46
[10]  
Stevič S.(2005)Asymptotic behaviour of a sequence defined by iteration with applications J Appl Math Comput 18 229-234