Stability of Mixed Additive–Quadratic and Additive–Drygas Functional Equations

被引:0
|
作者
Chang-Kwon Choi
Bogeun Lee
机构
[1] Kunsan National University,Department of Mathematics and Hwangrong Talent Education Institute
[2] Chonbuk National University,Department of Mathematics and Institute of Pure and Applied Mathematics
来源
Results in Mathematics | 2020年 / 75卷
关键词
Baire category theorem; Hyers–Ulam stability; Additive; Quadratic; Drygas; Functional equation; Lebesgue measure zero; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using the Baire category theorem we investigate the Hyers–Ulam stability problem of mixed additive–quadratic and additive–Drygas functional equations 2f(x+y)+f(x-y)-3f(x)-3f(y)=0,2f(x+y)+f(x-y)-3f(x)-2f(y)-f(-y)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 2f(x+y) + f(x-y) - 3f(x) -3f(y)&= 0,\\ 2f(x+y) + f(x-y) - 3f(x) -2f(y) -f(-y)&= 0 \end{aligned}$$\end{document}on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations.
引用
收藏
相关论文
共 50 条
  • [31] HYPERSTABILITY OF MULTI-MIXED ADDITIVE-QUADRATIC JENSEN TYPE MAPPINGS
    Salimi, Somaye
    Bodaghi, Abasalt
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (02): : 55 - 66
  • [32] On the Ulam stability of the Cauchy-Jensen equation and the additive-quadratic equation
    Bae, Jae-Hyeong
    Park, Won-Gil
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 710 - 718
  • [33] UNIQUENESS THEOREMS ON FUNCTIONAL INEQUALITIES CONCERNING CUBIC-QUADRATIC-ADDITIVE EQUATION
    Lee, Yang-Hi
    Jung, Soon-Mo
    Rassias, Michael Th.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (01): : 43 - 61
  • [34] On the stability of the additive Cauchy functional equation in random normed spaces
    Mihet, Dorel
    Radu, Viorel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 567 - 572
  • [35] THE STABILITY OF AN ADDITIVE (ρ1, ρ2)-FUNCTIONAL INEQUALITY IN BANACH SPACES
    Park, Choonkil
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (01): : 95 - 104
  • [36] A GENERALIZED ADDITIVE-QUARTIC FUNCTIONAL EQUATION AND ITS STABILITY
    Hengkrawit, Charinthip
    Thanyacharoen, Anurak
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (06) : 1759 - 1776
  • [37] A Characterization of Multi-Mixed Additive-Quadratic Mappings and a Fixed Point Application
    Falihi, S.
    Bodaghi, A.
    Shojaee, B.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2020, 55 (04): : 235 - 247
  • [38] Intuitionistic fuzzy stability of a general mixed additive-cubic equation
    Xu, Tian Zhou
    Rassias, John Michael
    Xu, Wan Xin
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [39] Alienation of Drygas’, Cauchy’s, Jensen’s and the quadratic equations on semigroups with an involutive automorphism
    Youssef Aissi
    Driss Zeglami
    Brahim Fadli
    Aequationes mathematicae, 2022, 96 : 1221 - 1232
  • [40] On the stability problem for a mixed type of quartic and quadratic functional equation
    Kim, Hark-Mahn
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) : 358 - 372