Stability of Mixed Additive–Quadratic and Additive–Drygas Functional Equations

被引:0
|
作者
Chang-Kwon Choi
Bogeun Lee
机构
[1] Kunsan National University,Department of Mathematics and Hwangrong Talent Education Institute
[2] Chonbuk National University,Department of Mathematics and Institute of Pure and Applied Mathematics
来源
Results in Mathematics | 2020年 / 75卷
关键词
Baire category theorem; Hyers–Ulam stability; Additive; Quadratic; Drygas; Functional equation; Lebesgue measure zero; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using the Baire category theorem we investigate the Hyers–Ulam stability problem of mixed additive–quadratic and additive–Drygas functional equations 2f(x+y)+f(x-y)-3f(x)-3f(y)=0,2f(x+y)+f(x-y)-3f(x)-2f(y)-f(-y)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 2f(x+y) + f(x-y) - 3f(x) -3f(y)&= 0,\\ 2f(x+y) + f(x-y) - 3f(x) -2f(y) -f(-y)&= 0 \end{aligned}$$\end{document}on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations.
引用
收藏
相关论文
共 50 条
  • [21] A class of functional equations for additive functions
    Ebanks, Bruce
    AEQUATIONES MATHEMATICAE, 2024, : 825 - 839
  • [22] ADDITIVE (α, β)-FUNCTIONAL EQUATIONS AND LINEAR MAPPINGS
    Park, Choonkil
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (02) : 1107 - 1115
  • [23] A Fixed Point Approach to the Fuzzy Stability of an Additive-Quadratic-Cubic Functional Equation
    Choonkil Park
    Fixed Point Theory and Applications, 2009
  • [24] A Fixed Point Approach to the Stability of an Additive-Quadratic-Cubic-Quartic Functional Equation
    JungRye Lee
    Ji-hye Kim
    Choonkil Park
    Fixed Point Theory and Applications, 2010
  • [25] Refined stability of the additive, quartic and sextic functional equations with counter-examples
    Hammad, Hasanen A.
    Aydi, Hassen
    De la Sen, Manuel
    AIMS MATHEMATICS, 2023, 8 (06): : 14399 - 14425
  • [26] Fuzzy Stability of Quadratic Functional Equations
    JungRye Lee
    Sun-Young Jang
    Choonkil Park
    DongYun Shin
    Advances in Difference Equations, 2010
  • [27] Fuzzy Stability of Quadratic Functional Equations
    Lee, Jung Rye
    Jang, Sun-Young
    Park, Choonkil
    Shin, Dong Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [28] On the Stability of a General Mixed Additive-Cubic Functional Equation in Random Normed Spaces
    TianZhou Xu
    JohnMichael Rassias
    WanXin Xu
    Journal of Inequalities and Applications, 2010
  • [29] THE FIXED POINT ALTERNATIVE TO THE STABILITY OF AN ADDITIVE (α,β)-FUNCTIONAL EQUATION
    Yun, Sungsik
    Park, Choonkil
    Kimk, Hee Sik
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (06) : 1008 - 1015
  • [30] Stability of an Additive-Cubic-Quartic Functional Equation
    M. Eshaghi-Gordji
    S. Kaboli-Gharetapeh
    Choonkil Park
    Somayyeh Zolfaghari
    Advances in Difference Equations, 2009