Stability of Mixed Additive–Quadratic and Additive–Drygas Functional Equations

被引:0
|
作者
Chang-Kwon Choi
Bogeun Lee
机构
[1] Kunsan National University,Department of Mathematics and Hwangrong Talent Education Institute
[2] Chonbuk National University,Department of Mathematics and Institute of Pure and Applied Mathematics
来源
Results in Mathematics | 2020年 / 75卷
关键词
Baire category theorem; Hyers–Ulam stability; Additive; Quadratic; Drygas; Functional equation; Lebesgue measure zero; 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using the Baire category theorem we investigate the Hyers–Ulam stability problem of mixed additive–quadratic and additive–Drygas functional equations 2f(x+y)+f(x-y)-3f(x)-3f(y)=0,2f(x+y)+f(x-y)-3f(x)-2f(y)-f(-y)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 2f(x+y) + f(x-y) - 3f(x) -3f(y)&= 0,\\ 2f(x+y) + f(x-y) - 3f(x) -2f(y) -f(-y)&= 0 \end{aligned}$$\end{document}on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations.
引用
收藏
相关论文
共 50 条
  • [1] Stability of Mixed Additive-Quadratic and Additive-Drygas Functional Equations
    Choi, Chang-Kwon
    Lee, Bogeun
    RESULTS IN MATHEMATICS, 2020, 75 (01)
  • [2] THE STABILITY OF ADDITIVE (α, β)-FUNCTIONAL EQUATIONS
    Lu, Ziying
    Lu, Gang
    Jin, Yuanfeng
    Park, Choonkil
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (06): : 2295 - 2307
  • [3] A generalized mixed type of quartic–cubic–quadratic–additive functional equations
    T. Z. Xu
    J. M. Rassias
    W. X. Xu
    Ukrainian Mathematical Journal, 2011, 63 : 461 - 479
  • [4] Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation
    M. Eshaghi Gordji
    S. Kaboli Gharetapeh
    J. M. Rassias
    S. Zolfaghari
    Advances in Difference Equations, 2009
  • [5] A general theorem on the stability of a class of functional equations including quadratic-additive functional equations
    Lee, Yang-Hi
    Jung, Soon-Mo
    SPRINGERPLUS, 2016, 5 : 1 - 16
  • [6] A general stability theorem for a class of functional equations including quadratic-additive functional equations
    Lee, Yang-Hi
    Jung, Soon-Mo
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (01) : 64 - 78
  • [7] A GENERALIZED MIXED TYPE OF QUARTIC-CUBIC-QUADRATIC-ADDITIVE FUNCTIONAL EQUATIONS
    Xu, T. Z.
    Rassias, J. M.
    Xu, W. X.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (03) : 461 - 479
  • [8] Stability of a mixed additive and quadratic functional equation in quasi-Banach spaces
    Nguyen Van Dung
    Vo Thi Le Hang
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (03)
  • [9] Stability of a mixed additive and quadratic functional equation in quasi-Banach spaces
    Nguyen Van Dung
    Vo Thi Le Hang
    Journal of Fixed Point Theory and Applications, 2018, 20
  • [10] A General Theorem on the Stability of a Class of Functional Equations Including Cubic-Quadratic-Additive Equations
    Lee, Yang-Hi
    Jung, Soon-Mo
    MATHEMATICS, 2018, 6 (12):