Spectral properties of a class of unicyclic graphs

被引:0
作者
Zhibin Du
机构
[1] Zhaoqing University,School of Mathematics and Statistics
来源
Journal of Inequalities and Applications | / 2017卷
关键词
spectral radius; least eigenvalue; spread; unicyclic graphs; 05C50; 15A42;
D O I
暂无
中图分类号
学科分类号
摘要
The eigenvalues of G are denoted by λ1(G),λ2(G),…,λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)$\end{document}, where n is the order of G. In particular, λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1}(G)$\end{document} is called the spectral radius of G, λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{n}(G)$\end{document} is the least eigenvalue of G, and the spread of G is defined to be the difference between λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}(G)$\end{document} and λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{n}(G)$\end{document}. Let U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} be the set of n-vertex unicyclic graphs, each of whose vertices on the unique cycle is of degree at least three. We characterize the graphs with the kth maximum spectral radius among graphs in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} for k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=1$\end{document} if n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge6$\end{document}, k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=2$\end{document} if n≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge8$\end{document}, and k=3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=3,4,5$\end{document} if n≥10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge10$\end{document}, and the graph with minimum least eigenvalue (maximum spread, respectively) among graphs in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} for n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge6$\end{document}.
引用
收藏
相关论文
共 22 条
  • [1] Guo J(2008)On the spectral radii of unicyclic graphs with fixed matching number Discrete Math. 308 6115-6131
  • [2] Belardo F(2006)Some results on the index of unicyclic graphs Linear Algebra Appl. 416 1048-1059
  • [3] Li Marzi EM(2004)On the spectral radius of unicyclic graphs MATCH Commun. Math. Comput. Chem. 51 97-109
  • [4] Simić SK(1987)Spectra of unicyclic graphs Graphs Comb. 3 7-23
  • [5] Yu A(1986)On the spectra of unicyclic graphs J. East China Norm. Univ. Natur. Sci. Ed. 1 31-34
  • [6] Tian F(1987)On the largest eigenvalue of unicyclic graphs Publ. Inst. Math. (Belgr.) 42 13-19
  • [7] Cvetković D(2008)Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread Linear Algebra Appl. 429 577-588
  • [8] Rowlinson P(2010)Minimizing the least eigenvalue of unicyclic graphs with fixed diameter Discrete Math. 310 947-955
  • [9] Hong Y(2016)The least eigenvalues of unicyclic graphs Ars Comb. 125 109-119
  • [10] Simić S(2005)The spectral radius of trees on Linear Algebra Appl. 395 343-349