Soft theorem of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM in Grassmannian formulation

被引:0
作者
Junjie Rao
机构
[1] Zhejiang University,Zhejiang Institute of Modern Physics
关键词
Scattering Amplitudes; Supersymmetric gauge theory;
D O I
10.1007/JHEP02(2015)087
中图分类号
学科分类号
摘要
Inspired by the new soft theorem in gravity by Cachazo and Strominger, the soft theorem for color-ordered Yang-Mills amplitudes has also been identified by Casali. In this note, the same content of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM using the Grassmannian formulation is studied. Explicitly, in the holomorphic soft limit, we reduce the n-particle amplitude in terms of Grassmannian contour integrations into the deformed (n − 1)-particle amplitude by localizing k variables relevant to the n-th particle. Afterwards, the leading soft factor and sub-leading soft operator naturally emerge.
引用
收藏
相关论文
共 55 条
  • [1] Low FE(1954)Scattering of light of very low frequency by systems of spin 1/2 Phys. Rev. 96 1428-undefined
  • [2] Gell-Mann M(1954)Scattering of low-energy photons by particles of spin 1/2 Phys. Rev. 96 1433-undefined
  • [3] Goldberger ML(1969)Low-energy theorem for Compton scattering Phys. Rev. 184 1894-undefined
  • [4] Saito S(1958)Bremsstrahlung of very low-energy quanta in elementary particle collisions Phys. Rev. 110 974-undefined
  • [5] Low FE(1964)Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass Phys. Rev. 135 B1049-undefined
  • [6] Weinberg S(1965)Infrared Photons and Gravitons Phys. Rev. 140 B516-undefined
  • [7] Weinberg S(2014)Soft sub-leading divergences in Yang-Mills amplitudes JHEP 08 077-undefined
  • [8] Casali E(2010)A Duality For The S Matrix JHEP 03 020-undefined
  • [9] Arkani-Hamed N(2011)Unification of Residues and Grassmannian Dualities JHEP 01 049-undefined
  • [10] Cachazo F(2010)A Grassmannian Etude in NMHV Minors JHEP 07 061-undefined