A class of injective compressing maps on linear recurring sequences over a Galois ring

被引:0
作者
D. N. Bylkov
机构
来源
Problems of Information Transmission | 2010年 / 46卷
关键词
Information Transmission; Characteristic Polynomial; Initial Vector; Arbitrary Sequence; Pseudorandom Sequence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider pseudorandom sequences v over a field GF(pr) obtained by mapping ℓ-grams of a linear recurring sequence u over a Galois ring to an arbitrary coordinate set. We study the possibility of uniquely reconstructing u given v. Earlier known results are briefly overviewed.
引用
收藏
页码:245 / 252
页数:7
相关论文
共 19 条
[1]  
Kurakin V.L.(1995)Linear Recurring Sequences over Rings and Modules J. Math. Sci. 76 2793-2915
[2]  
Kuzmin A.S.(1995)Linear Recurrent Sequences over Galois Rings Algebra i Logika 34 169-189
[3]  
Mikhalev A.V.(1993)Linear Recurrence Sequences over Galois Rings Uspekhi Mat. Nauk 48 167-168
[4]  
Nechaev A.A.(2007)Injectivity of Compressing Maps on Primitive Sequences over ℤ/( IEEE Trans. Inform. Theory 53 2960-2966
[5]  
Kuz’min A.S.(2005)) Finite Fields Appl. 11 30-44
[6]  
Nechaev A.A.(2004)Uniqueness of the Distribution of Zeroes of Primitive Level Sequences over ℤ/( IEEE Trans. Inform. Theory 50 2442-2448
[7]  
Kuz’min A.S.(2007)) IEEE Trans. Inform. Theory 53 2985-2990
[8]  
Nechaev A.A.(2000)Compression Mappings on Primitive Sequences over ℤ/( Fundam. Prikl. Mat. 6 1083-1094
[9]  
Tian T.(1989)) Diskret. Mat. 1 123-139
[10]  
Qi W.-F.(undefined)Further Result of Compressing Maps on Primitive Sequences Modulo Odd Prime Powers undefined undefined undefined-undefined