Deep learning-based school attendance prediction for autistic students

被引:0
|
作者
Mohammed Jarbou
Daehan Won
Jennifer Gillis-Mattson
Raymond Romanczyk
机构
[1] Binghamton University-State University of New York,Department of Systems Science and Industrial Engineering
[2] Binghamton University-State University of New York,Department of Psychology
来源
Scientific Reports | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Autism Spectrum Disorder is a neurodevelopmental disorder characterized by deficits in social communication and interaction as well as the presence of repetitive, restricted patterns of behavior, interests, or activities. Many autistic students experience difficulty with daily functioning at school and home. Given these difficulties, regular school attendance is a primary source for autistic students to receive an appropriate range of needed educational and therapeutic interventions. Moreover, school absenteeism (SA) is associated with negative consequences such as school drop-out. Therefore, early SA prediction would help school districts to intervene properly to ameliorate this issue. Due to its heterogeneity, autistic students show within-group differences concerning their SA. A comprehensive statistical analysis performed by the authors shows that the individual and demographic characteristics of the targeted population are not predictive factors of SA. So, we used the students’ recent previous attendance to predict their future attendance. We introduce a deep learning-based framework for predicting short-and long-term SA of autistic students using the Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) algorithms. The adopted algorithms outperform other machine learning algorithms. In detail, LSTM increased the accuracy and recall of short-term SA prediction by 20% and 13%, while the same scores of long-term SA prediction increased by 5% using MLP.
引用
收藏
相关论文
共 50 条
  • [1] Deep learning-based school attendance prediction for autistic students
    Jarbou, Mohammed
    Won, Daehan
    Gillis-Mattson, Jennifer
    Romanczyk, Raymond
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Machine Learning and Deep Learning-Based Students’ Grade Prediction
    Korchi A.
    Messaoudi F.
    Abatal A.
    Manzali Y.
    Operations Research Forum, 4 (4)
  • [3] Deep Learning-Based Conformal Prediction of Toxicity
    Zhang, Jin
    Norinder, Ulf
    Svensson, Fredrik
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) : 2648 - 2657
  • [4] Deep learning-based dose prediction for INTRABEAM
    Abushawish, Mojahed
    Galapon, Arthur V.
    Herraiz, Joaquin L.
    Udias, Jose M.
    Ibanez, Paula
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4472 - S4474
  • [5] Deep learning-based prediction of TFBSs in plants
    Shen, Wei
    Pan, Jian
    Wang, Guanjie
    Li, Xiaozheng
    TRENDS IN PLANT SCIENCE, 2021, 26 (12) : 1301 - 1302
  • [6] Deep learning-based prediction of proteincarbohydrate interfaces
    Gheeraert, A.
    Lin, R. Leon Foun
    Bailly, T.
    Ren, Y.
    Vander Meersche, Y.
    Cretin, G.
    Gelly, J.
    Galochkina, T.
    FEBS OPEN BIO, 2024, 14 : 94 - 94
  • [7] Deep learning-based location prediction in VANET
    Rezazadeh, Nafiseh
    Amirabadi, Mohammad Ali
    Kahaei, Mohammad Hossein
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (09) : 1574 - 1587
  • [8] Deep Learning-Based Wave Overtopping Prediction
    Alvarellos, Alberto
    Figuero, Andres
    Rodriguez-Yanez, Santiago
    Sande, Jose
    Pena, Enrique
    Rosa-Santos, Paulo
    Rabunal, Juan
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [9] A Survey of Deep Learning-Based Lightning Prediction
    Wang, Xupeng
    Hu, Keyong
    Wu, Yongling
    Zhou, Wei
    ATMOSPHERE, 2023, 14 (11)
  • [10] Deep learning-based prediction of autoimmune diseases
    Yang, Donghong
    Peng, Xin
    Zheng, Senlin
    Peng, Shenglan
    SCIENTIFIC REPORTS, 2025, 15 (01):